赞
踩
i7-7700k + TITAN X + 16G DDR4 2400 + 256G SSD
ubuntu16.0.4+ anaconda3+ tensorflow-gpu(0.12.1)
电脑已经安装CUDA9+ cuDNN7.1, 本次安装CUDA8.0.44 + cuDNN5.1
相关命令:
查看cuda版本 : nvcc -V
查看位置 : which nvcc
查看NVIDIA动态使用情况: watch -n 1 nvidia-smi
cuda 版本 : cat /usr/local/cuda/version.txt
cudnn 版本 : cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
NVIDIA 驱动版本 : cat /proc/driver/nvidia/version
查看环境变量 : env
LD_DEBUG=all cat
卸载cuda : sudo /usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl
卸载NVIDIA Driver : sudo /usr/bin/nvidia-uninstall
多版本CUDA切换:
sudo rm -rf /usr/local/cuda
sudo ln -s /usr/local/cuda-8.0 /usr/local/cuda
sudo ln -s /usr/local/cuda-9.1 /usr/local/cuda
查看目录属性: ls -l 目录名
具有管理员权限的文件管理器, 比如移动文件夹 : sudo nautilus
加入-R 参数,将权限传递给子文件夹 : chmod -R 777 /home/mypackage
**********************************************************************************************************
GitHub上下了个程序,tensorflow-gpu=0.12,gpu下跑报错,应该是CUDA版本高了
- E tensorflow/stream_executor/cuda/cuda_dnn.cc:378] Loaded runtime CuDNN library: 7103 (compatibility version 7100) but source was compiled with 5105 (compatibility version 5100). If using a binary install, upgrade your CuDNN library to match. If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.
- E tensorflow/stream_executor/cuda/cuda_dnn.cc:378] Loaded runtime CuDNN library: 7103 (compatibility version 7100) but source was compiled with 5105 (compatibility version 5100). If using a binary install, upgrade your CuDNN library to match. If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.
- F tensorflow/core/kernels/conv_ops.cc:532] Check failed: stream->parent()->GetConvolveAlgorithms(&algorithms)
- F tensorflow/core/kernels/conv_ops.cc:532] Check failed: stream->parent()->GetConvolveAlgorithms(&algorithms)
Ubuntu16.04下安装多版本cuda和cudnn_AscentOf的博客-CSDN博客_cuda多版本安装 :Ubuntu16.04下安装多版本cuda和cudnn
Ubuntu16.04下同时安装CUDA8.0和CUDA7.0_Rosun_的博客-CSDN博客 :Ubuntu16.04下同时安装CUDA8.0和CUDA7.0
https://blog.csdn.net/maple2014/article/details/78574275 :安装多版本 cuda ,多版本之间切换
https://blog.csdn.net/mumoDM/article/details/79462604 :多版本CUDA问题
Windows Tensorflow GPU安装_ChainingBlocks的博客-CSDN博客 :windows下tensorflow-gpu安装
0、 Tensorflow gpu 官方安装指南:
https://www.tensorflow.org/install/install_windows
下载CUDA并安装:
各个版本的CUDA :CUDA Toolkit Archive | NVIDIA Developer
下载CUDNN (要注册)
CUDNN库下载地址:NVIDIA cuDNN | NVIDIA Developer
Installation Guide for Linux : cuda_8.0.44(官方安装说明) cuda_8.0.44
安装CUDA8.0和cuDNN5.1:
Ubuntu16.04下安装cuda和cudnn的三种方法(亲测全部有效)_老王回归的博客-CSDN博客_ubuntu安装cuda
Ubuntu下安装CUDA8.0及nvidia驱动(详细教程)_autotian的博客-CSDN博客_cuda8.0
下载好后直接命令行解压然后复制 lib64 和 include 文件夹到 usr/local/cuda-8.0,命令如下:
- # Installing from a Tar Filetar -zxvf 压缩文件名.tar.gz
- sudo cp cuda/include/cudnn.h /usr/local/cuda-8.0/include
- sudo cp cuda/lib64/libcudnn* /usr/local/cuda-8.0/lib64
- sudo chmod a+r /usr/local/cuda-8.0/include/cudnn.h
- sudo chmod a+r /usr/local/cuda-8.0/lib64/libcudnn*
gedit ~/.bashrc #更改 ~/.bashrc 文件,添加两行
- export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
下面的不行:
- export PATH="$PATH:/usr/local/cuda/bin"
- export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64/"
sudo /etc/profile #必须更改/etc/profile 文件, 而且更改后必须重启计算机才有效 (source /etc/profile 不能生效)
- export PATH=/usr/local/cuda-9.1/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64:$LD_LIBRARY_PATH
改为:
- export PATH=/usr/local/cuda/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
从cuda9.1切换到cuda8.0:
- sudo rm -rf /usr/local/cuda #删除之前创建的软链接
- sudo ln -s /usr/local/cuda-8.0 /usr/local/cuda #创建新 cuda 的软链接
从cuda8.0切换到cuda9.0:
sudo rm -rf /usr/local/cuda #删除之前创建的软链接
sudo ln -s /usr/local/cuda-9.1 /usr/local/cuda #创建新 cuda 的软链接
可以用命令来查看cuda是否切换完成:
- $ nvcc --version
- nvcc: NVIDIA (R) Cuda compiler driver
- Copyright (c) 2005-2017 NVIDIA Corporation
- Built on Fri_Sep__1_21:08:03_CDT_2017
- Cuda compilation tools, release 9.0, V9.0.176
which nvcc :查看nvcc位置
CUDA8.0+cuDNN5.1 未完全安装:
- Installing the CUDA Toolkit in /usr/local/cuda-8.0 ...
- Installing the CUDA Samples in /home/human-machine ...
- Copying samples to /home/human-machine/NVIDIA_CUDA-8.0_Samples now...
- Finished copying samples.
-
- ===========
- = Summary =
- ===========
-
- Driver: Not Selected
- Toolkit: Installed in /usr/local/cuda-8.0
- Samples: Installed in /home/human-machine
-
- Please make sure that
- - PATH includes /usr/local/cuda-8.0/bin
- - LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root
-
- To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin
-
- Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.
-
- ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.
- To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
- sudo <CudaInstaller>.run -silent -driver
-
- Logfile is /tmp/cuda_install_1534.log
#编译并测试设备 deviceQuery:
切换到例子存放的路径,默认路径是 ~/NVIDIA_CUDA-7.5_Samples ,切换到相应路径
然后终端输入:$ make
运行编译生成的二进制文件
编译后的二进制文件, 默认存放在 ~/NVIDIA_CUDA-7.5_Samples/bin
切换路径 :$ cd /NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release
终端输入 :$ ./deviceQuery
#编译并测试带宽 bandwidthTest:
cd ../bandwidthTest
sudo make
./bandwidthTest
如果这两个测试的最后结果都是Result = PASS,说明CUDA安装成功
CUDA8.0+cuDNN5.1报错,但tensorflow-gpu可以跑,tensorboard也可以用。
- human-machine@humanmachine-System-Product-Name:~/NVIDIA_CUDA-8.0_Samples$ make
- make[1]: Entering directory '/home/human-machine/NVIDIA_CUDA-8.0_Samples/0_Simple/simpleVoteIntrinsics_nvrtc'
- find: `/usr/local/cuda-8.0/lib64/stubs': 没有那个文件或目录
- >>> WARNING - libcuda.so not found, CUDA Driver is not installed. Please re-install the driver. <<<
- [@] g++ -I../../common/inc -I/usr/local/cuda-8.0/include -o simpleVoteIntrinsics.o -c simpleVoteIntrinsics.cpp
- [@] g++ -L/usr/local/cuda-8.0/lib64 -L/usr/local/cuda-8.0/lib64/stubs -o simpleVoteIntrinsics_nvrtc simpleVoteIntrinsics.o -lcuda -lnvrtc
- [@] mkdir -p ../../bin/x86_64/linux/release
- [@] cp simpleVoteIntrinsics_nvrtc ../../bin/x86_64/linux/release
- make[1]: Leaving directory '/home/human-machine/NVIDIA_CUDA-8.0_Samples/0_Simple/simpleVoteIntrinsics_nvrtc'
- make[1]: Entering directory '/home/human-machine/NVIDIA_CUDA-8.0_Samples/0_Simple/matrixMul'
- "/usr/local/cuda-8.0"/bin/nvcc -ccbin g++ -I../../common/inc -m64 -gencode arch=compute_20,code=sm_20 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_60,code=compute_60 -o matrixMul.o -c matrixMul.cu
- nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning).
- cc1plus: fatal error: cuda_runtime.h: 没有那个文件或目录
- compilation terminated.
- Makefile:250: recipe for target 'matrixMul.o' failed
- make[1]: *** [matrixMul.o] Error 1
- make[1]: Leaving directory '/home/human-machine/NVIDIA_CUDA-8.0_Samples/0_Simple/matrixMul'
- Makefile:52: recipe for target '0_Simple/matrixMul/Makefile.ph_build' failed
- make: *** [0_Simple/matrixMul/Makefile.ph_build] Error 2
CUDA9.1+cuDNN7.1 编译测试正常:
Ubuntu 14.04 上安装 CUDA 7.5/8.0 超详细教程_服务器应用_Linux公社-Linux系统门户网站 :参考官方文档,干货
ubuntu 同时安装cuda8.0与cuda9.0,cuda9.1_七爷OK的博客-CSDN博客
Ubuntu16.04搭建GTX1080+CUDA9.0+cuDNN7.0.4+Tensorflow1.6.0环境
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。