当前位置:   article > 正文

十分钟掌握pandas中文版(pandas官方文档翻译)_pandas官方文档中文

pandas官方文档中文

十分钟掌握pandas

文档版本:0.20.3

这是一个对pandas简短的介绍,适合新用户。你可以在Cookbook中查看更详细的内容。

通常,我们要像下面一样导入一些包。

In [1]: import pandas as pd  

In [2]: import numpy as np  

In [3]: import matplotlib.pyplot as plt  
  • 1
  • 2
  • 3
  • 4
  • 5

创建对象

用一个包含值的序列创建一个Series,pandas会创建一个默认的整数索引

In [4]: s = pd.Series([1,3,5,np.nan,6,8])  
In [5]: s  
Out[5]:   
0    1.0  
1    3.0  
2    5.0  
3    NaN  
4    6.0  
5    8.0  
dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

numpy数值创建一个带有datetime索引和列标签的数据框

In [6]: dates = pd.date_range('20130101', periods=6)  

In [7]: dates  
Out[7]:   
DatetimeIndex(['2013-01-01', '2013-01-02',  
               '2013-01-03', '2013-01-04',  
               '2013-01-05','2013-01-06'],  
                dtype='datetime64[ns]', freq='D')  

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))  

In [9]: df  
Out[9]:   
                 A         B         C         D  
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804  
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

用包含对象的字典创建一个数据框,该方法与创建Series的方法相似。

In [10]: df2 = pd.DataFrame({ 'A' : 1.,  
    ....:                      'B' : pd.Timestamp('20130102'),  
    ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),  
    ....:                      'D' : np.array([3] * 4,dtype='int32'),  
    ....:                      'E' : pd.Categorical(["test","train","test","train"]),  
    ....:                      'F' : 'foo' })  
    ....:   

In [11]: df2  
Out[11]:   
        A          B    C  D      E    F  
    0  1.0 2013-01-02  1.0  3   test  foo  
    1  1.0 2013-01-02  1.0  3  train  foo  
    2  1.0 2013-01-02  1.0  3   test  foo  
    3  1.0 2013-01-02  1.0  3  train  foo  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

该数据框有特殊的dtypes

In [12]: df2.dtypes  
Out[12]:   
A           float64  
B    datetime64[ns]  
C           float32  
D             int32  
E          category  
F            object  
dtype: object  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

如果你是使用IPython,tab键可以自动激活可选列名(包括其它的属性)。下边就有一个可以被实现的属性的集合。

In [13]: df2.<TAB>  
df2.A                  df2.bool  
df2.abs                df2.boxplot  
df2.add                df2.C  
df2.add_prefix         df2.clip  
df2.add_suffix         df2.clip_lower  
df2.align              df2.clip_upper  
df2.all                df2.columns  
df2.any                df2.combine  
df2.append             df2.combine_first  
df2.apply              df2.compound  
df2.applymap           df2.consolidate  
df2.as_blocks          df2.convert_objects  
df2.asfreq             df2.copy  
df2.as_matrix          df2.corr  
df2.astype             df2.corrwith  
df2.at                 df2.count  
df2.at_time            df2.cov  
df2.axes               df2.cummax  
df2.B                  df2.cummin  
df2.between_time       df2.cumprod  
df2.bfill              df2.cumsum  
df2.blocks             df2.D  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

就像你所见到的列A,B,C和D的自动弹出都可以由tab完成。列E也是一样的;剩下的属性为了简短起见都省略了。

查看数据

查看整个数据的头部或尾部

In [14]: df.head()  
Out[14]:   
                 A         B         C         D  
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804  
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  

In [15]: df.tail(3)  
Out[15]:   
               A         B         C         D  
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

显示数据框的索引,列名和值。

In [16]: df.index  
Out[16]:   
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',  
            '2013-01-05', '2013-01-06'],  
            dtype='datetime64[ns]', freq='D')  

In [17]: df.columns  
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')  

In [18]: df.values  
Out[18]:   
array([[ 0.4691, -0.2829, -1.5091, -1.1356],  
   [ 1.2121, -0.1732,  0.1192, -1.0442],  
   [-0.8618, -2.1046, -0.4949,  1.0718],  
   [ 0.7216, -0.7068, -1.0396,  0.2719],  
   [-0.425 ,  0.567 ,  0.2762, -1.0874],  
   [-0.6737,  0.1136, -1.4784,  0.525 ]])  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

描述性显示关于数据的简短统计摘要

In [19]: df.describe()  
Out[19]:   
            A         B         C         D  
count  6.000000  6.000000  6.000000  6.000000  
mean   0.073711 -0.431125 -0.687758 -0.233103  
std    0.843157  0.922818  0.779887  0.973118  
min   -0.861849 -2.104569 -1.509059 -1.135632  
25%   -0.611510 -0.600794 -1.368714 -1.076610  
50%    0.022070 -0.228039 -0.767252 -0.386188  
75%    0.658444  0.041933 -0.034326  0.461706  
max    1.212112  0.567020  0.276232  1.071804  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

转置数据

In [20]: df.T  
Out[20]:   
        2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06  
    A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690  
    B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648  
    C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427  
    D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

通过轴来分类你的数据(相当于排序,axis=1可以理解为分类列名,=0则为索引名)

In [21]: df.sort_index(axis=1, ascending=False)  
Out[21]:   
                 D         C         B         A  
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112  
2013-01-02 -1.044236  0.119209 -0.173215  1.212112  
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849  
2013-01-04  0.271860 -1.039575 -0.706771  0.721555  
2013-01-05 -1.087401  0.276232  0.567020 -0.424972  
2013-01-06  0.524988 -1.478427  0.113648 -0.673690  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

通过值来分类

In [22]: df.sort_values(by='B')  
Out[22]:   
                 A         B         C         D  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804  
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

选择数据

小记:对于选择数据和设置数据来说,标准的python和numpy表达式非常直观而且对于交互式
工作来说很难进行的,对于应用性代码来说,我们比较推荐最优化的pandas数据获取方法,
例如.at, .iat, .loc, .iloc and .ix。

获取

在方括号中输入这个单一的列名,来获得一个Series,该操作相当于df.A

In [23]: df['A']  
Out[23]:   
2013-01-01    0.469112  
2013-01-02    1.212112  
2013-01-03   -0.861849  
2013-01-04    0.721555  
2013-01-05   -0.424972  
2013-01-06   -0.673690  
Freq: D, Name: A, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

通过对行切片来获取数据

In [24]: df[0:3]  
Out[24]:   
               A         B         C         D  
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804  

In [25]: df['20130102':'20130104']  
Out[25]:   
               A         B         C         D  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804  
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

由标签获取数据

用标签来截取一行数据

In [26]: df.loc[dates[0]]  
Out[26]:   
A    0.469112  
B   -0.282863  
C   -1.509059  
D   -1.135632  
Name: 2013-01-01 00:00:00, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在多个轴上通过标签来选取数据

In [27]: df.loc[:,['A','B']]  
Out[27]:   
               A         B  
2013-01-01  0.469112 -0.282863  
2013-01-02  1.212112 -0.173215  
2013-01-03 -0.861849 -2.104569  
2013-01-04  0.721555 -0.706771  
2013-01-05 -0.424972  0.567020  
2013-01-06 -0.673690  0.113648  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

同时用标签切片和标签名索引来获取数据

In [28]: df.loc['20130102':'20130104',['A','B']]  
Out[28]:   
               A         B  
2013-01-02  1.212112 -0.173215  
2013-01-03 -0.861849 -2.104569  
2013-01-04  0.721555 -0.706771  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

对返回的对象的维度进行减少维度

In [29]: df.loc['20130102',['A','B']]  
Out[29]:   
A    1.212112  
B   -0.173215  
Name: 2013-01-02 00:00:00, dtype: float64 
  • 1
  • 2
  • 3
  • 4
  • 5

仅仅获取标量值的方法

In [30]: df.loc[dates[0],'A']  
Out[30]: 0.46911229990718628  
  • 1
  • 2

更快地获取标量值(效果相当于前一个方法)

In [31]: df.at[dates[0],'A']  
Out[31]: 0.46911229990718628  
  • 1
  • 2

通过位置进行索引

通过适合的整数来代表位置进行索引

In [32]: df.iloc[3]  
Out[32]:   
A    0.721555  
B   -0.706771  
C   -1.039575  
D    0.271860  
Name: 2013-01-04 00:00:00, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

与numpy/python相似的操作,整数切片来获取数据

In [33]: df.iloc[3:5,0:2]  
Out[33]:   
               A         B  
2013-01-04  0.721555 -0.706771  
2013-01-05 -0.424972  0.567020  
  • 1
  • 2
  • 3
  • 4
  • 5

通过含有代表位置的整数列表来获取数据,与numpy/python的风格相似

In [34]: df.iloc[[1,2,4],[0,2]]  
Out[34]:   
               A         C  
2013-01-02  1.212112  0.119209  
2013-01-03 -0.861849 -0.494929  
2013-01-05 -0.424972  0.276232  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

显式切片索引行

In [35]: df.iloc[1:3,:]  
Out[35]:   
               A         B         C         D  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804  
  • 1
  • 2
  • 3
  • 4
  • 5

显式切片索引列

In [36]: df.iloc[:,1:3]  
Out[36]:   
               B         C  
2013-01-01 -0.282863 -1.509059  
2013-01-02 -0.173215  0.119209  
2013-01-03 -2.104569 -0.494929  
2013-01-04 -0.706771 -1.039575  
2013-01-05  0.567020  0.276232  
2013-01-06  0.113648 -1.478427  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

显式索引数据值

In [37]: df.iloc[1,1]  
Out[37]: -0.17321464905330858  
  • 1
  • 2

使系统快速地获取标量值(结果与前一个方法相等)

In [38]: df.iat[1,1]  
Out[38]: -0.17321464905330858 
  • 1
  • 2

布尔值索引

使用单一的列的值来选取数据

In [39]: df[df.A > 0]  
Out[39]:   
               A         B         C         D  
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

从给出布尔条件的数据框来获取数据

In [40]: df[df > 0]  
Out[40]:   
               A         B         C         D  
2013-01-01  0.469112       NaN       NaN       NaN  
2013-01-02  1.212112       NaN  0.119209       NaN  
2013-01-03       NaN       NaN       NaN  1.071804  
2013-01-04  0.721555       NaN       NaN  0.271860  
2013-01-05       NaN  0.567020  0.276232       NaN  
2013-01-06       NaN  0.113648       NaN  0.524988  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

使用isin()方法来过滤数据

In [41]: df2 = df.copy()  

In [42]: df2['E'] = ['one', 'one','two','three','four','three']  

In [43]: df2  
Out[43]:   
               A         B         C         D      E  
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one  
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two  
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three  
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four  
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three  

In [44]: df2[df2['E'].isin(['two','four'])]  
Out[44]:   
               A         B         C         D     E  
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two  
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

安插

在安插新的列时通过索引值自动排列

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))  

In [46]: s1  
Out[46]:   
2013-01-02    1  
2013-01-03    2  
2013-01-04    3  
2013-01-05    4  
2013-01-06    5  
2013-01-07    6  
Freq: D, dtype: int64  

In [47]: df['F'] = s1  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

通过标签安插值

In [48]: df.at[dates[0],'A'] = 0  
  • 1

通过位置安插值

In [49]: df.iat[0,1] = 0  
  • 1

通过分配numpy数组来安插新的列

In [50]: df.loc[:,'D'] = np.array([5] * len(df))  
  • 1

前面安插值的操作的结果

In [51]: df  
Out[51]:   
               A         B         C  D    F  
2013-01-01  0.000000  0.000000 -1.509059  5  NaN  
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  
2013-01-05 -0.424972  0.567020  0.276232  5  4.0  
2013-01-06 -0.673690  0.113648 -1.478427  5  5.0  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

用一个where操作来安插数据

In [52]: df2 = df.copy()  

In [53]: df2[df2 > 0] = -df2  

In [54]: df2  
Out[54]:   
               A         B         C  D    F  
2013-01-01  0.000000  0.000000 -1.509059 -5  NaN  
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0  
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0  
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0  
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0  
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

缺失值

早先的pandas使用 np.nan的值来代表缺失值。缺失值默认不会进行计算。

重新排列索引操作允许你在指定的轴上改变/增加/删除索引。下面返回一个前面数据的复制结果

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])  

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1  

In [57]: df1  
Out[57]:   
               A         B         C  D    F    E  
2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0  
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0  
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN  
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

删除所有含有缺失值的行

In [58]: df1.dropna(how='any')  
Out[58]:   
               A         B         C  D    F    E  
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0  
  • 1
  • 2
  • 3
  • 4

替换缺失值

In [59]: df1.fillna(value=5)  
Out[59]:   
               A         B         C  D    F    E  
2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0  
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0  
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0  
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

通过判断缺失值来获取布尔值

In [60]: pd.isnull(df1)  
Out[60]:   
            A      B      C      D      F      E  
2013-01-01  False  False  False  False   True  False  
2013-01-02  False  False  False  False  False  False  
2013-01-03  False  False  False  False  False   True  
2013-01-04  False  False  False  False  False   True  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

运算

统计表

该操作一般不包含缺失值

呈现一个描述性的统计表

In [61]: df.mean()  
Out[61]:   
A   -0.004474  
B   -0.383981  
C   -0.687758  
D    5.000000  
F    3.000000  
dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在其他轴上进行相同的操作

In [62]: df.mean(1)  
Out[62]:   
2013-01-01    0.872735  
2013-01-02    1.431621  
2013-01-03    0.707731  
2013-01-04    1.395042  
2013-01-05    1.883656  
2013-01-06    1.592306  
Freq: D, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

对有不同的维度和需要排列的对象进行运算。另外,pandas自动沿着指定的维度进行运算。

应用

对数据进行函数的应用

In [66]: df.apply(np.cumsum)  
Out[66]:   
               A         B         C   D     F  
2013-01-01  0.000000  0.000000 -1.509059   5   NaN  
2013-01-02  1.212112 -0.173215 -1.389850  10   1.0  
2013-01-03  0.350263 -2.277784 -1.884779  15   3.0  
2013-01-04  1.071818 -2.984555 -2.924354  20   6.0  
2013-01-05  0.646846 -2.417535 -2.648122  25  10.0  
2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0  

In [67]: df.apply(lambda x: x.max() - x.min())  
Out[67]:   
A    2.073961  
B    2.671590  
C    1.785291  
D    0.000000  
F    4.000000  
dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

统计值的频数

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))  

In [69]: s  
Out[69]:   
0    4  
1    2  
2    1  
3    2  
4    6  
5    4  
6    4  
7    6  
8    4  
9    4  
dtype: int64  

In [70]: s.value_counts()  
Out[70]:   
4    5  
6    2  
2    2  
1    1  
dtype: int64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

字符串操作

Series拥有像对字符串集合处理方法的能力,在str属性中可以对数组的每一个元素进行便捷的操作,就像下面的一小片字段中显示的那样。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])  

In [72]: s.str.lower()  
Out[72]:   
0       a  
1       b  
2       c  
3    aaba  
4    baca  
5     NaN  
6    caba  
7     dog  
8     cat  
dtype: object  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

聚合

组合

pandas提供了不同的工具为了简便地用不同的方式来对索引设置逻辑和相关的代数功能结合Series,DataFrame和Panel对象,例如join/merge-type操作

用concat()函数来连接pandas对象

In [73]: df = pd.DataFrame(np.random.randn(10, 4))  

In [74]: df  
Out[74]:   
      0         1         2         3  
0 -0.548702  1.467327 -1.015962 -0.483075  
1  1.637550 -1.217659 -0.291519 -1.745505  
2 -0.263952  0.991460 -0.919069  0.266046  
3 -0.709661  1.669052  1.037882 -1.705775  
4 -0.919854 -0.042379  1.247642 -0.009920  
5  0.290213  0.495767  0.362949  1.548106  
6 -1.131345 -0.089329  0.337863 -0.945867  
7 -0.932132  1.956030  0.017587 -0.016692  
8 -0.575247  0.254161 -1.143704  0.215897  
9  1.193555 -0.077118 -0.408530 -0.862495  

# break it into pieces  
In [75]: pieces = [df[:3], df[3:7], df[7:]]  

In [76]: pd.concat(pieces)  
Out[76]:   
      0         1         2         3  
0 -0.548702  1.467327 -1.015962 -0.483075  
1  1.637550 -1.217659 -0.291519 -1.745505  
2 -0.263952  0.991460 -0.919069  0.266046  
3 -0.709661  1.669052  1.037882 -1.705775  
4 -0.919854 -0.042379  1.247642 -0.009920  
5  0.290213  0.495767  0.362949  1.548106  
6 -1.131345 -0.089329  0.337863 -0.945867  
7 -0.932132  1.956030  0.017587 -0.016692  
8 -0.575247  0.254161 -1.143704  0.215897  
9  1.193555 -0.077118 -0.408530 -0.862495  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

Join

SQL风格的聚合方式

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})  

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})  

In [79]: left  
Out[79]:   
    key  lval  
0  foo     1  
1  foo     2  

In [80]: right  
Out[80]:   
    key  rval  
0  foo     4  
1  foo     5  

In [81]: pd.merge(left, right, on='key')  
Out[81]:   
    key  lval  rval  
0  foo     1     4  
1  foo     1     5  
2  foo     2     4  
3  foo     2     5  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

该方法的另一个例子

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})  

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})  

In [84]: left  
Out[84]:   
    key  lval  
0  foo     1  
1  bar     2  

In [85]: right  
Out[85]:   
    key  rval  
0  foo     4  
1  bar     5  

In [86]: pd.merge(left, right, on='key')  
Out[86]:   
     key  lval  rval  
0  foo     1     4  
1  bar     2     5  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

附加

对数据框附加行

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])  

In [88]: df  
Out[88]:   
      A         B         C         D  
0  1.346061  1.511763  1.627081 -0.990582  
1 -0.441652  1.211526  0.268520  0.024580  
2 -1.577585  0.396823 -0.105381 -0.532532  
3  1.453749  1.208843 -0.080952 -0.264610  
4 -0.727965 -0.589346  0.339969 -0.693205  
5 -0.339355  0.593616  0.884345  1.591431  
6  0.141809  0.220390  0.435589  0.192451  
7 -0.096701  0.803351  1.715071 -0.708758  

In [89]: s = df.iloc[3]  

In [90]: df.append(s, ignore_index=True)  
Out[90]:   
      A         B         C         D  
0  1.346061  1.511763  1.627081 -0.990582  
1 -0.441652  1.211526  0.268520  0.024580  
2 -1.577585  0.396823 -0.105381 -0.532532  
3  1.453749  1.208843 -0.080952 -0.264610  
4 -0.727965 -0.589346  0.339969 -0.693205  
5 -0.339355  0.593616  0.884345  1.591431  
6  0.141809  0.220390  0.435589  0.192451  
7 -0.096701  0.803351  1.715071 -0.708758  
8  1.453749  1.208843 -0.080952 -0.264610  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

分组运算

在”group by”中我们提及一个操作过程,该过程涉及到一个或多个下列步骤

  • 基于一个标准分割数据到各个组中
  • 在每个组中独立地应用函数
  • 结合结果到数据结构中
In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],  
                        'B' : ['one', 'one', 'two', 'three','two', 'two', 'one', 'three'],  
                        'C' : np.random.randn(8),  
                        'D' : np.random.randn(8)})  


In [92]: df  
Out[92]:   
    A      B         C         D  
0  foo    one -1.202872 -0.055224  
1  bar    one -1.814470  2.395985  
2  foo    two  1.018601  1.552825  
3  bar  three -0.595447  0.166599  
4  foo    two  1.395433  0.047609  
5  bar    two -0.392670 -0.136473  
6  foo    one  0.007207 -0.561757  
7  foo  three  1.928123 -1.623033  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

分组然后应用sum函数到分组的结果中

In [93]: df.groupby('A').sum()  
Out[93]:   
         C        D  
A                       
bar -2.802588  2.42611  
foo  3.146492 -0.63958  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
通过多列形式分组获得多重索引进行应用函数
  • 1
In [94]: df.groupby(['A','B']).sum()  
Out[94]:   
              C         D  
A   B                          
bar one   -1.814470  2.395985  
three -0.595447  0.166599  
two   -0.392670 -0.136473  
foo one   -1.195665 -0.616981  
three  1.928123 -1.623033  
two    2.414034  1.600434  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

重塑

有堆叠

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',  
....:                      'foo', 'foo', 'qux',     'qux'],  
....:                     ['one', 'two', 'one',     'two',  
....:                      'one', 'two', 'one', 'two']]))  
....:   

In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])  

In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])  

In [98]: df2 = df[:4]  

In [99]: df2  
Out[99]:   
                 A         B  
first second                      
bar   one     0.029399 -0.542108  
  two     0.282696 -0.087302  
baz   one    -1.575170  1.771208  
  two     0.816482  1.100230  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

stack()方法”压缩”DataFrame的列

In [100]: stacked = df2.stack()  

In [101]: stacked  
Out[101]:   
first  second     
bar    one     A    0.029399  
               B   -0.542108  
       two     A    0.282696  
               B   -0.087302  
baz    one     A   -1.575170  
               B    1.771208  
       two     A    0.816482  
               B    1.100230  
dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

对于堆叠的数据库,相反的stack()操作是unstack(),unstack()默认解除最后一个索引的堆叠状态。

In [102]: stacked.unstack()  
Out[102]:   
                 A         B  
first second                      
bar   one     0.029399 -0.542108  
      two     0.282696 -0.087302  
baz   one    -1.575170  1.771208  
      two     0.816482  1.100230  

In [103]: stacked.unstack(1)  
Out[103]:   
second        one       two  
first                        
bar   A  0.029399  0.282696  
      B -0.542108 -0.087302  
baz   A -1.575170  0.816482  
      B  1.771208  1.100230  

In [104]: stacked.unstack(0)  
Out[104]:   
first          bar       baz  
second                        
one    A  0.029399 -1.575170  
       B -0.542108  1.771208  
two    A  0.282696  0.816482  
       B -0.087302  1.100230  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

数据透视表

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,  
.....:                    'B' :     ['A', 'B', 'C'] * 4,  
.....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,  
.....:                    'D' : np.random.randn(12),  
.....:                    'E' : np.random.randn(12)})  
.....:   

In [106]: df  
Out[106]:   
        A  B    C         D         E  
0     one  A  foo  1.418757 -0.179666  
1     one  B  foo -1.879024  1.291836  
2     two  C  foo  0.536826 -0.009614  
3   three  A  bar  1.006160  0.392149  
4     one  B  bar -0.029716  0.264599  
5     one  C  bar -1.146178 -0.057409  
6     two  A  foo  0.100900 -1.425638  
7   three  B  foo -1.035018  1.024098  
8     one  C  foo  0.314665 -0.106062  
9     one  A  bar -0.773723  1.824375  
10    two  B  bar -1.170653  0.595974  
11  three  C  bar  0.648740  1.167115  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

我们可以从这个数据中轻松地制作出数据透视表

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])  
Out[107]:   
C             bar       foo  
A     B                      
one   A -0.773723  1.418757  
      B -0.029716 -1.879024  
      C -1.146178  0.314665  
three A  1.006160       NaN  
      B       NaN -1.035018  
      C  0.648740       NaN  
two   A       NaN  0.100900  
      B -1.170653       NaN  
      C       NaN  0.536826  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

呈现时区

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')  

In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)  

In [113]: ts  
Out[113]:   
2012-03-06    0.464000  
2012-03-07    0.227371  
2012-03-08   -0.496922  
2012-03-09    0.306389  
2012-03-10   -2.290613  
Freq: D, dtype: float64  

In [114]: ts_utc = ts.tz_localize('UTC')  

In [115]: ts_utc  
Out[115]:   
2012-03-06 00:00:00+00:00    0.464000  
2012-03-07 00:00:00+00:00    0.227371  
2012-03-08 00:00:00+00:00   -0.496922  
2012-03-09 00:00:00+00:00    0.306389  
2012-03-10 00:00:00+00:00   -2.290613  
Freq: D, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

转换到另一个时区

In [116]: ts_utc.tz_convert('US/Eastern')  
Out[116]:   
2012-03-05 19:00:00-05:00    0.464000  
2012-03-06 19:00:00-05:00    0.227371  
2012-03-07 19:00:00-05:00   -0.496922  
2012-03-08 19:00:00-05:00    0.306389  
2012-03-09 19:00:00-05:00   -2.290613  
Freq: D, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

在时间区间内转化

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')  

In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)  

In [119]: ts  
Out[119]:   
2012-01-31   -1.134623  
2012-02-29   -1.561819  
2012-03-31   -0.260838  
2012-04-30    0.281957  
2012-05-31    1.523962  
Freq: M, dtype: float64  

In [120]: ps = ts.to_period()  

In [121]: ps  
Out[121]:   
2012-01   -1.134623  
2012-02   -1.561819  
2012-03   -0.260838  
2012-04    0.281957  
2012-05    1.523962  
Freq: M, dtype: float64  

In [122]: ps.to_timestamp()  
Out[122]:   
2012-01-01   -1.134623  
2012-02-01   -1.561819  
2012-03-01   -0.260838  
2012-04-01    0.281957  
2012-05-01    1.523962  
Freq: MS, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

在时间段和时间戳之间进行转换可以使用便捷的算术函数。在下面的例子中,我们把在十一月结束的季度频率转化为在月末的九点的季度频率:

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')  

In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)  

In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9  

In [126]: ts.head()  
Out[126]:   
1990-03-01 09:00   -0.902937  
1990-06-01 09:00    0.068159  
1990-09-01 09:00   -0.057873  
1990-12-01 09:00   -0.368204  
1991-03-01 09:00   -1.144073  
Freq: H, dtype: float64  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

分类

从0.15版本开始,pandas就可以在数据框内包含分类数据。

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})  
  • 1

把 raw_grade转变为分类数据类型。

In [128]: df["grade"] = df["raw_grade"].astype("category")  

In [129]: df["grade"]  
Out[129]:   
0    a  
1    b  
2    b  
3    a  
4    a  
5    e  
Name: grade, dtype: category  
Categories (3, object): [a, b, e]  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

将分类数据重命名为更有意义的名字。

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]  
  • 1

重新排列分类数据,同时添加缺失的分类数据。

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])  

In [132]: df["grade"]  
Out[132]:   
0    very good  
1         good  
2         good  
3    very good  
4    very good  
5     very bad  
Name: grade, dtype: category  
Categories (5, object): [very bad, bad, medium, good, very good]  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

对分类数据进行排序会作用于每列而不是指定的列。

In [133]: df.sort_values(by="grade")  
Out[133]:   
    id raw_grade      grade  
5   6         e   very bad  
1   2         b       good  
2   3         b       good  
0   1         a  very good  
3   4         a  very good  
4   5         a  very good  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

画图

在数据框中,plot()是一个非常方便的把所有列作为标签绘制在图标上的函数。

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))  

In [136]: ts = ts.cumsum()  

In [137]: ts.plot()  
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1187d7278> 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

这里写图片描述

输入/输出数据

CSV

把数据输出为csv文件

In [141]: df.to_csv('foo.csv')  
  • 1

读取csv文件

In [142]: pd.read_csv('foo.csv')  
  • 1

HDF5

写出一个HDF5存储单元

In [143]: df.to_hdf('foo.h5','df')  
  • 1

读入一个HDF5存储单元

In [144]: pd.read_hdf('foo.h5','df')  
  • 1

Excel

写出一个excel文件

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')  
  • 1

读入一个excel文件

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])  
  • 1
声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号