当前位置:   article > 正文

8个数据清洗Python代码,复制可用,最长11行 | 资源

8个数据清洗Python代码,复制可用,最长11行 | 资源
原作 Kin Lim Lee
乾明 编译整理
量子位 出品 | 公众号 QbitAI

640?wx_fmt=jpeg

最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。

数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。

这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。

在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。

大家可以把这篇文章收藏起来,当做工具箱使用。

涵盖8大场景的数据清洗代码

这些数据清洗代码,一共涵盖8个场景,分别是:

删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳(从字符串到日期时间格式)

删除多列

在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。

def drop_multiple_col(col_names_list, df):     '''    AIM    -> Drop multiple columns based on their column names     INPUT  -> List of column names, df    OUTPUT -> updated df with dropped columns     ------    '''    df.drop(col_names_list, axis=1, inplace=True)    return df

转换数据类型

当数据集变大时,需要转换数据类型来节省内存。

def change_dtypes(col_int, col_float, df):     '''    AIM    -> Changing dtypes to save memory    INPUT  -> List of column names (int, float), df    OUTPUT -> updated df with smaller memory      ------    '''    df[col_int] = df[col_int].astype('int32')    df[col_float] = df[col_float].astype('float32')

将分类变量转换为数值变量

一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化。

def convert_cat2num(df):    # Convert categorical variable to numerical variable    num_encode = {'col_1' : {'YES':1, 'NO':0},                  'col_2'  : {'WON':1, 'LOSE':0, 'DRAW':0}}      df.replace(num_encode, inplace=True)  

检查缺失数据

如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。

def check_missing_data(df):    # check for any missing data in the df (display in descending order)    return df.isnull().sum().sort_values(ascending=False)

删除列中的字符串

有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。

def remove_col_str(df):    # remove a portion of string in a dataframe column - col_1    df['col_1'].replace('\n', '', regex=True, inplace=True)    # remove all the characters after &# (including &#) for column - col_1    df['col_1'].replace(' &#.*', '', regex=True, inplace=True)

删除列中的空格

数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用。

def remove_col_white_space(df):    # remove white space at the beginning of string     df[col] = df[col].str.lstrip()

用字符串连接两列(带条件)

当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。

根据需要,结尾处的字母也可以在连接完成后删除。

def concat_col_str_condition(df):    # concat 2 columns with strings if the last 3 letters of the first column are 'pil'    mask = df['col_1'].str.endswith('pil', na=False)    col_new = df[mask]['col_1'] + df[mask]['col_2']    col_new.replace('pil', ' ', regex=True, inplace=True)  # replace the 'pil' with emtpy space


转换时间戳(从字符串到日期时间格式)

在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。

这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

def convert_str_datetime(df):     '''    AIM    -> Convert datetime(String) to datetime(format we want)    INPUT  -> df    OUTPUT -> updated df with new datetime format     ------    '''    df.insert(loc=2, column='timestamp', value=pd.to_datetime(df.transdate, format='%Y-%m-%d %H:%M:%S.%f')) 

最后,附上原文传送门~

https://towardsdatascience.com/the-simple-yet-practical-data-cleaning-codes-ad27c4ce0a38


加入社群

量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

640?wx_fmt=jpeg

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「好看」吧 !




声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/343107
推荐阅读
相关标签
  

闽ICP备14008679号