赞
踩
要回答这个问题,首先得知道神经网络都在计算些什么东西?之前我在迁移学习的文章中稍有提到,跳转链接在下面:
为什么其他任务预训练的模型参数,可以在我这个任务上起作用?http://t.csdnimg.cn/FVAV8 本文我不光从机器视觉,还举例自然语言处理和语音识别来更为全面的解答这个问题。当你知晓了神经网络在学什么东西后,你就会明白为什么深层的往往比浅层的好用,但这也并不是说深层的就一定好。
假设你在教一个小朋友认识不同的动物,最开始孩子可能通过直观的特征来区分,比如:“有毛的是动物,有翅膀的是鸟”。这时候孩子还只能用这种非常简单且低级的特征来进行分类。这就好比浅层神经网络,它智能捕捉到数据中最基本、最表面的特征。
随着孩子的成长和学习的深入,开始理解更复杂的概念。比如:“鸟是脊椎动物,有羽毛,能飞行”。这种对动物本质属性的认知,相当于构建了一个更复杂,更抽象,更深层次的理解框架。这就像深层神经网络,每一层可以学习到更抽象、更高级的特征表示。
以机器视觉识别人脸为例,浅层、中层和深层神经网络各层在学习过程中承担的任务和所关注的特征可以形象地描述如下:
浅层就像一个初学绘画的学生,刚开始的时候只是绘画对象的基本线条和色彩,如画出人脸的大致轮廓、眉毛的位置、眼睛的形状等。
中层就像已经有一定绘画功底的学生,开始注重描绘对象的细节和各部分的相互关系,如细致刻画眼睛的形状、睫毛的长短,以及鼻子与嘴唇的比例协调等。
深层就像是经验丰富的画家,不仅能精确描绘对象的所有细节,还能把握其精神气质和个性特征,使画作超越表象,传达出人物的身份特性和内在神韵。
在自然语言处理(NLP)中的文本分类任务,特别是情感分析,浅层、中层和深层神经网络各层同样承担着不同的学习任务,逐步构建起对文本特征的多层次理解。
浅层如同初次阅读文本的学生,重点关注词汇的字面含义和基本语法结构,理解单个词汇和简单短语的意义。
中层如同具有一定阅读理解能力的学生,不仅能理解词汇和短语,还能把握它们在句子中的确切意义和相互关系,理解句子的局部语义结构。
深层如同深度阅读并进行文本分析的专家,能够全面理解文本的主旨、情感基调、论述结构和整体风格,不仅知其言,更能解其意,把握文本的深层情感内涵和表达意图。
在语音识别任务中,浅层、中层和深层神经网络各层负责学习不同级别的声音特征和语音模式。以下是对各层学习内容的具体描述:
浅层就像一位听觉敏锐的音乐家,专注于聆听音符的高低、强弱、长短,以及它们在短时间内如何交织成基本旋律片段。
中层就像一位语言学者,不仅能听出单个音素,还能辨析它们如何组成有意义的音节和词,以及这些词如何按照语言规则组合成短语。
深层如同精通多国语言的翻译官,不仅能听懂每个单词和短语,还能解析复杂的句子结构,理解其深层语义,并适应不同的说话风格和环境背景,最终准确还原出完整的口头表达。
深层的网络隐藏单元数量相对较少,隐藏层数目较多,如果浅层的网络想要达到同样的计算结果则需要指数级增长的单元数量才能达到。
深层的网络这种由低级到高级、由局部到整体的多层次理解。使得模型能够有效捕捉多样性和复杂性。
不同的机器学习任务对模型的复杂度需求各异。对于简单、线性可分或者特征与标签之间关系较为直接的问题,浅层神经网络或甚至传统的线性模型就足以胜任。
随着网络深度的增加,模型的参数数量通常会显著增长,这可能导致模型对训练数据过度敏感,学习到过于复杂的模式,尤其是在数据量有限的情况下。过拟合时,模型在训练集上表现良好,但在未见过的新数据上性能急剧下降。对于数据规模较小或特征维度较低的任务,增加网络深度可能会引入不必要的复杂性,增加过拟合风险,而浅层或适度深度的网络反而能提供更稳健的泛化能力。
深度神经网络在训练和推断过程中通常需要更多的计算资源(如GPU时间、内存)和更长的训练时间。对响应速度和有严格要求的任务或者计算资源受限的场景,浅层或轻量级模型可能是更合适的选择。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。