赞
踩
近期在学习研究一些关于自动化机器学习方面的论文,本文作为该系列的第一篇文章,就AutoML的一些基本概念和现状进行简单分享,权当抱砖引玉。
图片源自《Taking Human out of Learning Applications: A Survey on Automated Machine Learning》2018
在算法行业有这样一句话,大意是说80%的时间用在做数据清洗和特征工程,仅有20%的时间用来做算法建模,其核心是在说明数据和特征所占比重之大。与此同时,越来越多的数据从业者们也希望能够降低机器学习的入门门槛,尤其是降低对特定领域的业务经验要求、算法调参经验等。基于这一背景,AutoML应运而生。
如何理解AutoML呢?从字面意思来看,AutoML即为Auto+ML,是自动化+机器学习两个学科的结合体;从技术角度来说,则是泛指在机器学习各阶段流程中有一个或多个阶段采取自动化而无需人工参与的实现方案。例如在本文开篇引用的AutoML经典图例中:其覆盖了特征工程(Feature Engineering)、模型选择(Model Selection)、算法选择(Algorithm Selection)以及模型评估(Model Evaluation)4个典型阶段,而仅有问题定义、数据准备和模型部署这三部分工作交由人工来实现。
AutoML,与其说是一项技术,不如称之为一种思想:即将一门学科的技术(自动化)引入另一门学科(机器学习)的思想。所以从某种角度来说,AutoML本不是什么新鲜技术,也并见得需要创新性突破可言。那是什么促使其诞生并盛行于当下呢?原因主要有三:
上面介绍了AutoML的产生原因,其实是回答了Why的问题。与Why相对应的一般就是What和How的问题。那么AutoML是What呢?当然,这里不打算用开篇图例中的模块来讲解What的问题,而是用人话来说说AutoML当下的几个热点:
简单说完Why和What的问题之后,介绍How的问题就不那么简单了。这本身是一个需要持续理解和不断精进的过程,如果现在来说也只能描述的主流产品一级:Auto-WEKA、Hyperopt-Sklearn、Auto-Sklearn、TPOT、H2O、AutoGluon……这份清单其实可以罗列几十种,遍布国内外。
当然,罗列是一回事,讲得清楚用得娴熟则又是另一回事了……
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
整理了我入门大模型的学习路线和自用资料,在全民LLM时期,多输入一些就多一重安全感。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。