当前位置:   article > 正文

【python 的各种模块】(6) 如何用matplotlib来画多个图形,子图,以及图中图

【python 的各种模块】(6) 如何用matplotlib来画多个图形,子图,以及图中图

目录

1 前言&抛出问题:如何用matplotlib画多个图形?

1.1  matplotlib.pyplot里 figure下的层级,画布和图形的层级

1.2 根据 matplotlib.pyplot里 figure下的层级

1.2.1 情况1:一个画布里画图

1.2.2 情况2:代码里创建多个figure,分别作图

1.2.3 情况3:子图概念

1.2.4 情况4:图中图

2 用matplotlib 画多个函数图形

2.1 情况1:在一个画布的画图

2.2 情况2:在多个画布里,分别画图

3 情况3:一个画布里作图多个子图(多种方法)

3.1 用plt.subplot()方式绘制多子图

3.1.1 plt.subplot()基本语法

3.1.2 特殊点

3.1.3 测试代码

3.2 用plt.subplots() 方式绘制多子图

3.2.1 plt.subplots() 的基本语法

3.2.2 作图步骤

3.2.3 直接修改 plt.subplot的代码,修改为 plt.subplots

3.3  使用fig.add_subplot() 函数绘制图中图

3.3.1 基本语法

3.3.2 测试代码

4 情况4:用fig.add_axes() 实现图中图(其实是子图的一种)

4.1 基本语法

4.2 步骤

4.3  测试代码1

4.4 测试代码2

4.4.1 添加子图区域

4.4.2 定义子图区域的位置和大小 ax1=fig.add_axes([left, bottom, width, height])

4.4.3 设置图例和标题,都是每个子图区域单独一套(独立显示)


1 前言&抛出问题:如何用matplotlib画多个图形?

如果要画多个图形,可能有各种情况,我大致整理为下面4种:

  • 情况1
  • 情况2
  • 情况3
  • 情况4

1.1  matplotlib.pyplot里 figure下的层级,画布和图形的层级

  • 第1层: figure  画布
  • 第2层: axes 子图
  • 第3层: axis 坐标轴

1.2 根据 matplotlib.pyplot里 figure下的层级

1.2.1 情况1:一个画布里画图

  • 可以在一个画布里只有1套坐标轴,画1个图形
  • 可以在一个画布里只有1套坐标轴,画多个图形,叠加显示在一起

1.2.2 情况2:代码里创建多个figure,分别作图

  • 如果代码里有多个figure
  • 可以在每个figure画布里,有1套坐标轴和画1个图形

1.2.3 情况3:子图概念

  • 代码里只有1个figure
  • 但是里面可以有多个子图:axes
  • 每个子图
  1. 包含一套坐标轴系
  2. 包含1个或多个图形

1.2.4 情况4:图中图

  • 代码里有2个figure
  • 1个figure正常显示一个或多个图形
  • 另外一个figure,内嵌在这个figure里

2 用matplotlib 画多个函数图形

2.1 情况1:在一个画布的画图

  • 1张画布,1个坐标轴系,多个图形叠在一起
  • 这种情况下,图形比较适合进行对比,比较
  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. fig1=plt.figure(num=1)
  4. x=np.linspace(-5,5, 10)
  5. y=x*2+1
  6. y2=x**2
  7. # 绘图
  8. plt.plot(x, y)
  9. plt.plot(x, y2)
  10. # 显示图像
  11. plt.show()

2.2 情况2:在多个画布里,分别画图

  • 多张画布
  • 多个坐标轴系
  • 每个画布里分别包含1个/多个图形

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. x=np.linspace(-5,5, 10)
  4. fig1=plt.figure(num=1,figsize=(3,3))
  5. y=x*2+1
  6. # 绘图
  7. plt.plot(x, y)
  8. #新开一个画布
  9. fig2=plt.figure(num=2,figsize=(5, 5))
  10. y2=x**2
  11. # 绘图
  12. plt.plot(x, y2)
  13. # 显示图像
  14. plt.show()


 

3 情况3:一个画布里作图多个子图(多种方法)

  • 1张画布
  • 多个坐标轴系
  • 分别包含1个图形
  • 且按内部序号排列,图形上按表格排列

3.1 用plt.subplot()方式绘制多子图

3.1.1 plt.subplot()基本语法

  • plt.subplot()方式绘制多子图,只需要传入简单几个参数即可:
  • plt.subplot(rows, columns, current_subplot_index)
  • 形如plt.subplot(2, 2, 1) 或者 plt.subplot(221),其中:
  1. rows表示最终子图的行数;
  2. columns表示最终子图的列数;
  3. current_subplot_index表示当前子图的索引;
  4. 这几个参数是可以连写在一起的,同样可以被识别
  5. 例如:上面的plt.subplot(2, 2, 1),写成plt.subplot(221),两者是等价的。

3.1.2 特殊点

  • plt.subplot()方式绘制多子图时,不需要先创建一个figure
  • #fig=plt.figure()  #可以不需要figure

3.1.3 测试代码

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. #fig=plt.figure() #可以不需要figure
  4. # 子图1,散点图
  5. plt.subplot(2, 2, 1)
  6. plt.scatter(np.linspace(-2, 2, 5), np.random.randn(5))
  7. # 子图2,折线图+网格
  8. plt.subplot(2, 2, 2)
  9. plt.plot(np.linspace(-2, 2, 5), np.random.randn(5))
  10. plt.grid(True)
  11. # 子图3,柱状图
  12. plt.subplot(2, 2, 3)
  13. x = np.linspace(0, 5, 5)
  14. plt.bar(x, np.random.random(5))
  15. plt.xticks(np.arange(0, 6))
  16. # 子图4,饼图
  17. plt.subplot(2, 2, 4)
  18. plt.pie(np.random.random(5), labels=list("ABCDE"))
  19. plt.show()

3.2 用plt.subplots() 方式绘制多子图

3.2.1 plt.subplots() 的基本语法

matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)

  • nrows:默认为 1,设置图表的行数。
  • ncols:默认为 1,设置图表的列数。
  • sharex、sharey:设置 x、y 轴是否共享属性,默认为 false,可设置为 'none'、'all'、'row' 或 'col'。 False 或 none 每个子图的 x 轴或 y 轴都是独立的,True 或 'all':所有子图共享 x 轴或 y 轴,'row' 设置每个子图行共享一个 x 轴或 y 轴,'col':设置每个子图列共享一个 x 轴或 y 轴。
  • squeeze:布尔值,默认为 True,表示额外的维度从返回的 Axes(轴)对象中挤出,对于 N*1 或 1*N 个子图,返回一个 1 维数组,对于 N*M,N>1 和 M>1 返回一个 2 维数组。如果设置为 False,则不进行挤压操作,返回一个元素为 Axes 实例的2维数组,即使它最终是1x1。
  • subplot_kw:可选,字典类型。把字典的关键字传递给 add_subplot() 来创建每个子图。
  • gridspec_kw:可选,字典类型。把字典的关键字传递给 GridSpec 构造函数创建子图放在网格里(grid)。
  • **fig_kw:把详细的关键字参数传给 figure() 函数。

3.2.2 作图步骤

  • STEP1: 先设定figure 和 划分 axes子区域
  • STEP2: 分配每个子区域的位置
  • STEP3: 每个子区域单独作图

fig,axes=plt.subplots(2,2)

ax1=axes[0,0]

ax2=axes[0,1]

ax3=axes[1,0]

ax4=axes[1,1]

# 子图1,散点图
ax1.scatter(np.linspace(-2, 2, 5), np.random.randn(5))

3.2.3 直接修改 plt.subplot的代码,修改为 plt.subplots

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. # 把上面subplot代码改写为subplots
  4. x = np.arange(0, 100)
  5. #划分子图
  6. fig,axes=plt.subplots(2,2)
  7. ax1=axes[0,0]
  8. ax2=axes[0,1]
  9. ax3=axes[1,0]
  10. ax4=axes[1,1]
  11. # 子图1,散点图
  12. ax1.scatter(np.linspace(-2, 2, 5), np.random.randn(5))
  13. # 子图2,折线图+网格
  14. ax2.plot(np.linspace(-2, 2, 5), np.random.randn(5))
  15. plt.grid(True)
  16. # 子图3,柱状图
  17. x = np.linspace(0, 5, 5)
  18. ax3.bar(x, np.random.random(5))
  19. plt.xticks(np.arange(0, 6))
  20. # 子图4,饼图
  21. ax4.pie(np.random.random(5), labels=list("ABCDE"))
  22. plt.show()


3.3  使用fig.add_subplot() 函数绘制图中图

3.3.1 基本语法

  • fig.add_subplot(2,2,1) 
  • 这个语法和 plt.subplot() 相似
  • 但是差别就是,这个是动态的设计子图

对比

方式1: plt.subplot()

  • plt.subplot(2, 2, 1)

方式2: fig.add_subplot()

  • ax1=fig.add_subplot(2,2,1) 
  • ax1.scatter(np.linspace(-2, 2, 5), np.random.randn(5))

3.3.2 测试代码

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. # 把上面subplot代码改写为,动态的fig.add_subplot()
  4. #新建figure对象
  5. fig=plt.figure()
  6. x = np.arange(0, 100)
  7. #划分子图
  8. # 子图1,散点图
  9. ax1=fig.add_subplot(2,2,1)
  10. ax1.scatter(np.linspace(-2, 2, 5), np.random.randn(5))
  11. # 子图2,折线图+网格
  12. ax2=fig.add_subplot(2,2,2)
  13. ax2.plot(np.linspace(-2, 2, 5), np.random.randn(5))
  14. plt.grid(True)
  15. # 子图3,柱状图
  16. ax3=fig.add_subplot(2,2,3)
  17. x = np.linspace(0, 5, 5)
  18. ax3.bar(x, np.random.random(5))
  19. plt.xticks(np.arange(0, 6))
  20. # 子图4,饼图
  21. ax4=fig.add_subplot(2,2,4)
  22. ax4.pie(np.random.random(5), labels=list("ABCDE"))
  23. plt.show()

4 情况4:用fig.add_axes() 实现图中图(其实是子图的一种)

4.1 基本语法

  • fig.add_axes([left, bottom, width, height])
  • 本质和上面用 fig.add_axes()实现多子图的方法差不多
  • 所以,可以认为 图中图是另外一种形式的子图

4.2 步骤

  • STEP1:  创建子图 ax1 = fig.add_axes([left, bottom, width, height])
  • STEP2:  在子图中,画图,ax1.plot(x, y, 'r')
  • STEP3:  标准子图的标题,ax1.set_title('area1')

4.3  测试代码1

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. #新建figure
  4. fig = plt.figure()
  5. # 定义数据
  6. x = np.linspace(1,10,100)
  7. y = np.cos(x)
  8. #新建区域ax1
  9. #figure的百分比,从figure 10%的位置开始绘制, 宽高是figure的80%
  10. left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
  11. # 获得绘制的句柄
  12. ax1 = fig.add_axes([left, bottom, width, height])
  13. ax1.plot(x, y, 'r')
  14. ax1.set_title('area1')
  15. #新增区域ax2,嵌套在ax1内
  16. left, bottom, width, height = 0.2, 0.6, 0.25, 0.25
  17. # 获得绘制的句柄
  18. ax2 = fig.add_axes([left, bottom, width, height])
  19. ax2.plot(x,y, 'b')
  20. ax2.set_title('area2')
  21. plt.show()

4.4 测试代码2

可以清晰的发现,图中图,就是子图的一种表现形式

4.4.1 添加子图区域

下面就是在figure里添加一个子图区域

  • ax1=fig.add_axes([0.1,0.1,0.7,0.7])

4.4.2 定义子图区域的位置和大小 ax1=fig.add_axes([left, bottom, width, height])

  • 下面2种写法相同
  • ax1=fig.add_axes([left, bottom, width, height])
  • 含义
  • fig.add_axes([X起点百分比, Y起点百分比, X长度百分比, Y长度百分比])
  • 写法1:
  1. left, bottom, width, height =0.1,0.1,0.7,0.7
  2. ax1=fig.add_axes([left, bottom, width, height])
  • 写法2:
  1. ax1=fig.add_axes([0.1,0.1,0.7,0.7])

4.4.3 设置图例和标题,都是每个子图区域单独一套(独立显示)

  • 如果加的是 plt.plot(,label="") 则必须匹配一个 plt.legend() 显示图例,并且是每个子图都需要一个单独的plt.legend()
  • ax2.set_title("title: y=cos(x)") 可以单独设置每个figure的标题,也是每个子图区域单独一套
  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. x1=np.linspace(-10,10,100)
  4. y1=np.exp(x1)
  5. x2=np.arange(-10,10,0.1)
  6. y2=np.cos(x2)
  7. fig=plt.figure()
  8. #同left, bottom, width, height =0.1,0.1,0.7,0.7
  9. #ax1=fig.add_axes([left, bottom, width, height])
  10. ax1=fig.add_axes([0.1,0.1,0.7,0.7])
  11. ax1.plot(x1,y1,"b",label="y=e^x")
  12. plt.legend(loc="lower left")
  13. ax1.set_title("title: y=e^x")
  14. ax2=fig.add_axes([0.15,0.4,0.3,0.3])
  15. ax2.plot(x2,y2,"r",label="y=cos(x)")
  16. plt.legend(loc="lower left")
  17. ax2.set_title("title: y=cos(x)")
  18. plt.show()

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/556589
推荐阅读
相关标签
  

闽ICP备14008679号