当前位置:   article > 正文

如何免费用 Llama 3 70B 帮你做数据分析与可视化?

如何免费用 Llama 3 70B 帮你做数据分析与可视化?

快速、强悍且免费,你还等啥?

f92cc97c4450654949f1713de8f0bafa.jpeg

Llama 3 的发布,真可谓一石激起千层浪。前两天,许多人还对「闭源模型能力普遍大于开源模型」的论断表示赞同。但是,最新的 LLM 排行榜(https://chat.lmsys.org/?leaderboard),已经把新的趋势变化凸显在所有人面前。

430a4a02704a5424f6b5dcbcca25c314.jpeg

Llama 3 70B 的能力,已经可以和 Claude 3 Sonnet 与 Gemini 1.5 Pro 等量齐观,甚至都已经超过了去年的两款 GPT-4 。

更有意思的,就是价格了。实际上,不论是 8B 和 70B 的 Llama 3 ,你都可以在本地部署了。后者可能需要使用量化版本,而且要求一定显存支持。但是这对于很多人来说已经是非常幸福了,因为之前在本地想跑个 GPT-4 级别的模型是可望不可及的事儿。

我找到了一个 大语言模型性价比排行榜(https://llmpricecheck.com/),你可以参考一下。

f5b0cc3c170b77070726ca6d30b914db.jpeg

如果你只看模型能力,Llama 3 70B 目前还只能屈居第六,但是你对比一下价格,就会明白恐怖在哪里了。

f51a1bbd180007195186d8c4dc8cea62.jpeg

同样是 1M token 输入 + 1M token 输出,前 5 名里面最便宜的 GPT-4 Turbo ,也要 30 美金;而 Llama 3 70B 成本连 1 美金都不到。

Llama 3 70B 到底好不好用呢?

我第一时间就做了测试。

顺便说一下,目前能够使用 Llama 3 70B 对话的地方很多,包括但不限于 Meta 官方的 meta.ai,Huggingface 的 Huggingchat,Perplexity Lab,以及 GroqChat。

我使用的是 Huggingchat ,让它给我编写一个 pong 游戏。代码生成速度很快。

cbd41feb02b0c1be46edb8fb4e21cad8.jpeg

之后,我把代码直接贴到了 Visual Studio Code 里面,然后运行。

989109028d7c7fe1310b4e4831ddfb36.jpeg

结果是毫无报错,直接顺利运行。

752a7354eb68bec8b60aa33b83361be8.gif

左手 W, S 按键,右手上下按键。左右互搏,我玩儿了个不亦乐乎,哈哈。

我一下子来了灵感 —Llama 3 70B 这东西的编程能力既然这么好,为什么不用它和 Open Interpreter 结合,帮我做数据分析呢?

哦,对了,到哪儿调用它的 API 呢?

别忘了,咱们有 Openrouter 啊!

Openrouter 几乎第一时间,就把 Llama 3 70B 和 8B 两个 Instruct 模型加了进去,而且定价非常便宜。

8c3c774da807bc646126bc0086d4f777.jpeg

运行起来,只需要把原先调用 Haiku 时候的命令

interpreter --model openrouter/anthropic/claude-3-haiku -y --context_window 200000 --max_tokens 8196 --max_output 8196

替换成:

interpreter --model openrouter/meta-llama/llama-3-70b-instruct -y --context_window 200000 --max_tokens 8196 --max_output 8196

具体的安装配置方式,请参考《如何用 Claude 3 Haiku 帮你低成本快速自动分析数据?》这篇文章。

所以你看,Openrouter 真是个大语言模型的自选超市,方便啊。

可惜,运行的效果并不理想。Llama 3 70B 非得在编程的时候开头儿多加一些表示代码段的反引号,然后就一直在运行代码时挣扎纠结,最后干脆退出了。

05e5003ea4c3c8fe3ea34d9a4cee9b86.jpeg

我很失望,不过阴差阳错居然想到,应该 Llama 3 8B 也拿出来试试看。

interpreter --model openrouter/meta-llama/llama-3-8b-instruct -y --context_window 200000 --max_tokens 8196 --max_output 8196

结果呢?一开始一样,也是在代码开头儿有反引号,但是我只是在提示词里告诉它一下,不要加,然后…… 它居然就解决,并且顺利运行成功了!

9026f5852b65d408a47dfa2e5f768b69.jpeg

这是 Open Interpreter + Llama 3 8B 根据我的提示,绘制的特斯拉和苹果公司年初至今的股价变动。

352ed02060d4af0cd11367452cb74667.jpeg

我得出来的结论,是 8B 这个小模型没有 Llama 3 70B 那么「拧」,哈哈。

但是,我显然心有不甘。毕竟比起来,我更喜欢使用能力强 Llama 3 70B。

好在转机很快就来了。

转机发生在 Groq 上。

如果说其他 AI 大语言模型公司和团队在拼的是模型答题准确率、上下文长度之类的指标,那么 Groq 就非常有意思了。它专注于提供服务,把其他家做出来的模型变得更快。

你看看它提供的模型列表:

c8932fc81cff767568b7eae44e458295.jpeg

没有一个模型是它原创,但是它就是能够把模型推理速度提升到令人不可思议的地步。

在 Groq 里面,用流式输出没啥意义,因为你能体会到「唰啦」一下子结果就输出完毕了。

73afd752efc2e9cdb7ddb506927608bc.jpeg

更有意思的是,它提供了一个 Free Beta 模式,目前你使用上面的模型,包括其中最强的Llama 3 70B,都是免费的

下面咱们试试,用它来结合 Open Interpreter 进行数据分析。

interpreter --model groq/llama3-70b-8192 -y --context_window 200000 --max_tokens 8192 --max_output 8192

我把完整的运行过程录制了下来。请注意,我没有进行任何的剪辑或者加速。

没错,就是这么行云流水,从计划到编程直到输出,全都快速搞定。

然后,这是生成并保存在本地的结果图。

b0d8acdd2c3957c48ed04237fb0e5415.jpeg

当然,我也尝试了用它来做词云,一样是飞快搞定。这里就不赘述了。你可以用这个新的开源模型,加上 Groq 快速推理机制,把之前的 9 大数据分析与可视化样例免费重做一遍,看看比起 Claude 3 Haiku 来 Llama 3 70B 是不是有很大的进步。

另外说一句,现在包含了 Llama 3 70B 的 Groq 应用,也已经在 iOS 的 Test Flight 提供了,你可以 点击这个链接申请试用(https://testflight.apple.com/join/Y9X0wGsi)。

5fb6eb75b7e4d273d3dbecbc71664e18.jpeg

祝 AI 辅助数据分析愉快!

点赞 +「在看」,转发给你身边有需要的朋友。收不到推送?那是因为你只订阅,却没有加星标

欢迎订阅我的小报童付费专栏,每月更新不少于3篇文章。订阅一整年价格优惠。

a3a293498edd4f97ca2aa89bd7e6f05b.jpeg

如果有问题咨询,或者希望加入社群和热爱钻研的小伙伴们一起讨论,订阅知识星球吧。不仅包括小报童的推送内容,还可以自由发帖与提问。之前已经积累下的帖子和问答,就有数百篇。足够你好好翻一阵子。知识星球支持72小时内无条件退款,所以你可以放心尝试。

86143407b3e4f4dc961aa961fc47c4bb.jpeg

若文中部分链接可能无法正常显示与跳转,可能是因为微信公众平台的外链限制。如需访问,请点击文末「阅读原文」链接,查看链接齐备的版本。 

延伸阅读

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/682982
推荐阅读
相关标签
  

闽ICP备14008679号