当前位置:   article > 正文

机器人工具箱学习(一)_peter corke的机器人工具箱

peter corke的机器人工具箱

一、机器人工具箱介绍

   机器人工具箱是由来自昆士兰科技大学的教授Peter Corke开发的,被广泛用于机器人进行仿真(主要是串联机器人)。该工具箱支持机器人一些基本算法的功能,例如三维坐标中的方向表示,运动学、动力学模型和轨迹生成。
   学习该工具箱较为经典的书籍有以下两本,其中第一本是Peter Corke教授自己编写的,为英文版,第二本是国内学者翻译的。
在这里插入图片描述

二、机器人工具箱的下载和安装

2.1 机器人工具箱下载

   可以在官方网站下载安装文件(点这个超链接即可跳转:机器人工具箱下载官网),如下所示:
在这里插入图片描述
   下载的文件名为 RTB10.4.mltbx,如下所示:
在这里插入图片描述

2.2 机器人工具箱安装

  在matlab中打开刚刚存放RTB10.4.mltbx文件的目录,然后双击RTB10.4.mltbx文件:
在这里插入图片描述
在这里插入图片描述
  下载完毕之后,输入指令:ver,便可以查看我们所下载的机器人工具箱版本,同时也进一步确认该工具箱是否安装成功
在这里插入图片描述
在这里插入图片描述

三、机器人学中的一些数学基础

3.1 三维空间中的位置和姿态

3.1.1 位置描述

  我个人简单的认为,所谓的位置描述就是点在某一个坐标系中的坐标。
在这里插入图片描述

上图中,空间中任意一点在坐标系 { A } \left\{ A \right\} {A}中的表示为:
在这里插入图片描述
其中, p x 、 p y 、 p z p _ { x }、p _ { y }、p _ { z } pxpypz分别表示该点在坐标系 { A } \left\{ A \right\} {A}中的三个坐标。MATLAB中,利用plot3( )函数可以绘制三维空间中的一个点。例如绘制空间中点(1,2,3):plot3(1,2,3,'*');
在这里插入图片描述

3.1.2 姿态描述

  我个人认为,所谓的姿态描述就是表示空间中某一个物体的方位。
在这里插入图片描述

如上图所示,空间中存在一个刚体,与该刚体固连的坐标系 { B } \left\{ B \right\} {B}。该刚体相对于坐标系 { A } \left\{ A \right\} {A}的姿态用姿态变换矩阵(也叫旋转矩阵) B A R _{B}^{A}\mathbf{\mathit{R}} BAR
在这里插入图片描述

式中, x A {\mathbf{\mathit{x}}}_{A} xA y A {\mathbf{\mathit{y}}}_{A} yA z A {\mathbf{\mathit{z}}}_{A} zA分别表示坐标系 { A } \left\{ A \right\} {A}三个坐标轴在某一个坐标系下的表示; x B {\mathbf{\mathit{x}}}_{B} xB y B {\mathbf{\mathit{y}}}_{B} yB z B {\mathbf{\mathit{z}}}_{B} zB分别表示坐标系 { B } \left\{ B \right\} {B}三个坐标轴在某一个坐标系下的表示; A x B ^ { A }x_{ B } AxB A y B ^ { A } y _ { B } AyB A z B ^ { A } z _ { B } AzB表示坐标系 { B } \left\{ B \right\} {B}三个坐标轴在坐标系 { A } \left\{ A \right\} {A}上的表达。
  当分别绕坐标轴 x 、 y 、 z x、y、z xyz旋转角度 θ \theta θ时,姿态变换矩阵 R R R可以分别表示为:
在这里插入图片描述

  机器人工具箱中提供rotx( )roty( )rotz( )函数来计算绕单个坐标轴旋转的姿态矩阵(注意:这些个函数默认角度制,但好像有的版本时默认弧度制度,注意辨别一下):
在这里插入图片描述

  使用trplot( )函数可以图形化显示相应的坐标系,例如显示一个绕基坐标系的 x x x轴旋转60°的坐标系,如下图所示:
在这里插入图片描述

  使用tranimate( )函数可以显示坐标系旋转的动画,如下图所示:
在这里插入图片描述

3.1.3 函数总结

(1)绕单个坐标轴旋转的旋转矩阵:rotx( )、roty( )、rotz( )函数
  ● rotx( ):R=rotx( θ \theta θ)表示围绕 x x x轴旋转角度 θ \theta θ所得到的旋转矩阵,函数返回一个3x3的矩阵;
  ● roty( ):R=roty( θ \theta θ)表示围绕 y y y轴旋转角度 θ \theta θ所得到的旋转矩阵,函数返回一个3x3的矩阵;
  ● rotz( ):R=rotz( θ \theta θ)表示围绕 z z z轴旋转角度 θ \theta θ所得到的旋转矩阵,函数返回一个3x3的矩阵;

(2)绘制坐标系:trplot( )函数
 trplot( )函数的语法:trplot(R, options)
  ● trplot®:绘制由旋转矩阵 R R R得到的坐标系;
  ● trplot(T):绘制由齐次变换矩阵 T T T表示的坐标系;
 trplot( )函数的options项有其他的用法
在这里插入图片描述

(3)动画展示函数:tranimate( )函数
  ● tranimate(x1, x2, options):展示3D坐标系从姿态x1变换到姿态x2的动画效果其中,姿态 x1和 x2有三种表示方法:一个4X4 的齐次矩阵,或一个3x3的旋转矩阵,或一个四元数;
  ● tranimate(x,options):展示了坐标系由上一个姿态变换到姿态x的动画效果。同样地,姿势x也有三种表示方法:一个4X4 的齐次矩阵,或一个 3x3 的旋转矩阵,或一个四元数;
  ● tranimate(xseq,options):展示了移动一段轨迹的动画效果。xseq可以是一组4x4xN的齐次矩阵,或一组 3x3xN 的旋转矩阵,或是一组四元数向量(Nx1)。
tranimate( )函数中options的其他用法:
在这里插入图片描述

3.2 坐标变换

  同一个物体可以在不同的坐标系下进行描述,这之间就涉及到坐标变换

3.2.1 平移坐标变换

在这里插入图片描述

如上图所示,坐标系 { A } \left\{ A \right\} {A}没有经过旋转,直接平移得到坐标系 { B } \left\{ B \right\} {B} P P P是坐标系 { B } \left\{ B \right\} {B}中的一点,用矢量 B P ^ { B } P BP表示它在坐标系 { B } \left\{ B \right\} {B}中的位置,用矢量 A P ^ { A } P AP表示它在坐标系 { A } \left\{ A \right\} {A}中的位置,则有:
在这里插入图片描述
式中, A P B O R G ^ { A } P _ { B O R G } APBORG是坐标系 { A } \left\{ A \right\} {A}平移的矢量。

  用4x4的齐次矩阵表示由坐标系 { A } \left\{ A \right\} {A}到坐标系 { B } \left\{ B \right\} {B}的平移变换矩阵:
在这里插入图片描述

其中, B x B_{x} Bx B y B_{y} By B z B_{z} Bz分别表示矢量 A P B O R G ^ { A } P _ { B O R G } APBORG的三个分量。
  机器人工具箱中用transl( )函数来计算平移变换矩阵,例如:坐标系 { A } \left\{ A \right\} {A}的坐标(这里的坐标指代位置和姿态)表示为:
在这里插入图片描述

坐标系 { A } \left\{ A \right\} {A}沿着 x x x轴移动10,沿着 y y y轴移动5,沿着 z z z轴移动1得到坐标系 { B } \left\{ B \right\} {B},可以用transl(10, 5, 1)来得到平移变换矩阵。
在这里插入图片描述

3.2.2 旋转坐标变换

在这里插入图片描述

  如上图所示,坐标系 { A } \left\{ A \right\} {A}没有经过平移,直接旋转(旋转矩阵为 B A R _{B}^{A}\mathbf{\mathit{R}} BAR)得到坐标系 { B } \left\{ B \right\} {B}。同一个点 P P P在坐标系 { A } \left\{ A \right\} {A}和坐标系 { B } \left\{ B \right\} {B}中的表达分别为 A P ^ { A } P AP B P ^ { B } P BP,两者的转换关系为:
在这里插入图片描述

  机器人工具箱中用trotx( )troty( )trotz( )函数分别表示绕 x x x轴、 y y y轴和 z z z轴旋转一定角度的4x4的齐次变换矩阵:
在这里插入图片描述

3.2.3 齐次坐标变换

在这里插入图片描述
  如上图所示,坐标系 { A } \left\{ A \right\} {A}经过平移(平移矢量为 A P B O R G ^ { A } P _ { B O R G } APBORG)和旋转(旋转矩阵为 B A R _{B}^{A}\mathbf{\mathit{R}} BAR)得到坐标系 { B } \left\{ B \right\} {B},则有:
在这里插入图片描述
将上式写成齐次坐标变换的形式:
在这里插入图片描述

  例如,坐标系 { A } \left\{ A \right\} {A}先绕 y y y轴旋转120°,然后再沿着 x x x轴移动4,沿着 y y y轴移动5,沿着 z z z轴移动6得到坐标系 { B } \left\{ B \right\} {B}
在这里插入图片描述

  坐标系 { B } \left\{ B \right\} {B}中的矢量 B P ^ { B} P BP在坐标系 { A } \left\{ A \right\} {A}中进行描述 A P ^ { A } P AP
在这里插入图片描述
在这里插入图片描述

  已知 A P ^ { A } P AP B P ^ { B } P BP
在这里插入图片描述
在这里插入图片描述
  在三维坐标中画出经过齐次变换的两个坐标系:
在这里插入图片描述

  transl( )函数可以获取齐次变换矩阵 T T T中的平移矢量,t2r( )函数可以获取齐次变换矩阵 T T T中的旋转矩阵,r2t( )函数可以根据旋转矩阵 R R R得到齐次变换矩阵 T T T(只有旋转,没有移动):
在这里插入图片描述

3.2.4 函数总结

(1)平移坐标变换:transl( )函数
  ● 使用transl( )函数创建齐次的平移变换矩阵
   1)T = transl(x,y,z):表示能够获取一个分别沿着x轴、y轴和z轴平移一段距离得到的4X4齐次变换矩阵;
   2)T= transl§:表示由经过矩阵(或向量) p = [ x , y , z ] p = \left[ x , y , z \right] p=[x,y,z]的平移得到的齐次变换矩阵如果 p p p为(Mx3)的矩 阵,则 T T T为一组齐次变换矩阵(4x4xM),其中 T ( : , : , i ) T ( : , : , i ) T(:,:,i)对应于 p p p的第 i i i行。
  ● 使用transl( )函数提取齐次矩阵 T T T中的平移变换分量。
(2)旋转坐标变换:trotx( )函数、troty( )函数和trotz( )函数
  ● T=trotx( θ \theta θ):表示围绕 x x x轴旋转 θ \theta θ角度得到的齐次变换矩阵(4x4);
  ● T=troty( θ \theta θ):表示围绕 y y y轴旋转 θ \theta θ角度得到的齐次变换矩阵(4x4);
  ● T=trotz( θ \theta θ):表示围绕 z z z轴旋转 θ \theta θ角度得到的齐次变换矩阵(4x4);
(3)t2r( )与r2t( )函数
  ● R=t2r(T):用来获取齐次变换矩阵 T T T中的旋转矩阵分量;
  ● T=r2t(R ):用来获取一个与旋转矩阵 R R R等价的具有零平移分量的齐次变换矩阵。

结语

我是木头人,以上全是个人见解,有问题请大家评论区指出,大家共同进步!!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/884735
推荐阅读
相关标签
  

闽ICP备14008679号