赞
踩
来源:专知
[ 导读 ]图神经网络研究成为当前深度学习领域的热点。最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai同学对 GNN 相关的综述论文、模型与应用进行了综述,并发布在 GitHub 上。16大应用包含物理、知识图谱等最新论文整理推荐。
1. Survey | |
2. Models | |
2.1 Basic Models | 2.2 Graph Types |
2.3 Pooling Methods | 2.4 Analysis |
2.5 Efficiency | |
3. Applications | |
3.1 Physics | 3.2 Chemistry and Biology |
3.3 Knowledge Graph | 3.4 Recommender Systems |
3.5 Computer Vision | 3.6 Natural Language Processing |
3.7 Generation | 3.8 Combinatorial Optimization |
3.9 Adversarial Attack | 3.10 Graph Clustering |
3.11 Graph Classification | 3.12 Reinforcement Learning |
3.13 Traffic Network | 3.14 Few-shot and Zero-shot Learning |
3.15 Program Representation | 3.16 Social Network |
Graph Neural Networks: A Review of Methods and Applications. arxiv 2018. paper
Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun.
A Comprehensive Survey on Graph Neural Networks. arxiv 2019. paper
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu.
Deep Learning on Graphs: A Survey. arxiv 2018. paper
Relational Inductive Biases, Deep Learning, and Graph Networks. arxiv 2018. paper
Battaglia, Peter W and Hamrick, Jessica B and Bapst, Victor and Sanchez-Gonzalez, Alvaro and Zambaldi, Vinicius and Malinowski, Mateusz and Tacchetti, Andrea and Raposo, David and Santoro, Adam and Faulkner, Ryan and others.
Geometric Deep Learning: Going beyond Euclidean data. IEEE SPM 2017. paper
Computational Capabilities of Graph Neural Networks. IEEE TNN 2009. paper
Neural Message Passing for Quantum Chemistry. ICML 2017. paper
Non-local Neural Networks. CVPR 2018. paper
The Graph Neural Network Model. IEEE TNN 2009. paper
Scarselli, Franco and Gori, Marco and Tsoi, Ah Chung and Hagenbuchner, Markus and Monfardini, Gabriele.
Graphical-Based Learning Environments for Pattern Recognition. SSPR/SPR 2004. paper
Franco Scarselli, Ah Chung Tsoi, Marco Gori, Markus Hagenbuchner.
A new model for learning in graph domains. IJCNN 2005. paper
Marco Gori, Gabriele Monfardini, Franco Scarselli.
Graph Neural Networks for Ranking Web Pages. WI 2005. paper
Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung Tsoi, Marco Maggini.
Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014. paper
Deep Convolutional Networks on Graph-Structured Data. arxiv 2015. paper
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS 2016. paper
Diffusion-Convolutional Neural Networks. NIPS 2016. paper
Gated Graph Sequence Neural Networks. ICLR 2016. paper
Learning Convolutional Neural Networks for Graphs. ICML 2016. paper
Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov.
Semantic Object Parsing with Graph LSTM. ECCV 2016. paper
Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017. paper
Inductive Representation Learning on Large Graphs. NIPS 2017. paper
Geometric deep learning on graphs and manifolds using mixture model cnns. CVPR 2017. paper
Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, Michael M. Bronstein.
Graph Attention Networks. ICLR 2018. paper
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio.
Covariant Compositional Networks For Learning Graphs. ICLR 2018. paper
Graph Partition Neural Networks for Semi-Supervised Classification. ICLR 2018. paper
Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Urtasun, Richard Zemel.
Inference in Probabilistic Graphical Models by Graph Neural Networks. ICLR Workshop 2018. paper
Structure-Aware Convolutional Neural Networks. NeurIPS 2018. paper
Bayesian Semi-supervised Learning with Graph Gaussian Processes. NeurIPS 2018. paper
Adaptive Graph Convolutional Neural Networks. AAAI 2018. paper
DyRep: Learning Representations over Dynamic Graphs. ICLR 2019. paper
Hypergraph Neural Networks. AAAI 2019. paper
Heterogeneous Graph Attention Network. WWW 2019. paper
Representation Learning for Attributed Multiplex Heterogeneous Network. KDD 2019. paper
ActiveHNE: Active Heterogeneous Network Embedding. IJCAI 2019. paper
Xia Chen, Guoxian Yu, Jun Wang, Carlotta Domeniconi, Zhao Li, Xiangliang Zhang.
GCN-LASE: Towards Adequately Incorporating Link Attributes in Graph Convolutional Networks. IJCAI 2019. paper
Exploiting Edge Features in Graph Neural Networks. CVPR 2019. paper
Hierarchical Graph Representation Learning with Differentiable Pooling. NeurIPS 2018. paper
Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, Jure Leskovec.
Self-Attention Graph Pooling. ICML 2019. paper
Junhyun Lee, Inyeop Lee, Jaewoo Kang.
Graph U-Nets. ICML 2019. paper
Graph Convolutional Networks with EigenPooling. KDD 2019. paper
Relational Pooling for Graph Representations. ICML 2019. paper
A Comparison between Recursive Neural Networks and Graph Neural Networks. IJCNN 2006. paper
Vincenzo Di Massa, Gabriele Monfardini, Lorenzo Sarti, Franco Scarselli, Marco Maggini, Marco Gori.
Neural networks for relational learning: an experimental comparison. Machine Learning 2011. paper
Mean-field theory of graph neural networks in graph partitioning. NeurIPS 2018. paper
Representation Learning on Graphs with Jumping Knowledge Networks. ICML 2018. paper
Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka.
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. AAAI 2018. paper
Qimai Li, Zhichao Han, Xiao-Ming Wu.
How Powerful are Graph Neural Networks? ICLR 2019. paper
Stability and Generalization of Graph Convolutional Neural Networks. KDD 2019. paper
Simplifying Graph Convolutional Networks. ICML 2019. paper
Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, Kilian Q. Weinberger.
Explainability Methods for Graph Convolutional Neural Networks. CVPR 2019. paper
Can GCNs Go as Deep as CNNs? ICCV 2019. paper
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. AAAI 2019. paper
Stochastic Training of Graph Convolutional Networks with Variance Reduction. ICML 2018. paper
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. ICLR 2018. paper
Adaptive Sampling Towards Fast Graph Representation Learning. NeurIPS 2018. paper
Large-Scale Learnable Graph Convolutional Networks. KDD 2018. paper
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. KDD 2019. paper
A Degeneracy Framework for Scalable Graph Autoencoders. IJCAI 2019. paper
Discovering objects and their relations from entangled scene representations. ICLR Workshop 2017. paper
David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, Peter Battaglia.
A simple neural network module for relational reasoning. NIPS 2017. paper
Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap.
Interaction Networks for Learning about Objects, Relations and Physics. NIPS 2016. paper
Visual Interaction Networks: Learning a Physics Simulator from Video. NIPS 2017. paper
Nicholas Watters, Andrea Tacchetti, Théophane Weber, Razvan Pascanu, Peter Battaglia, Daniel Zoran.
Graph networks as learnable physics engines for inference and control. ICML 2018. paper
Learning Multiagent Communication with Backpropagation. NIPS 2016. paper
VAIN: Attentional Multi-agent Predictive Modeling. NIPS 2017 paper
Neural Relational Inference for Interacting Systems. ICML 2018. paper
Graph Element Networks: adaptive, structured computation and memory. ICML 2019. paper
Ferran Alet, Adarsh K. Jeewajee, Maria Bauza, Alberto Rodriguez, Tomas Lozano-Perez, Leslie Pack Kaelbling.
Convolutional networks on graphs for learning molecular fingerprints. NIPS 2015. paper
David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams.
Molecular Graph Convolutions: Moving Beyond Fingerprints. Journal of computer-aided molecular design 2016. paper
Protein Interface Prediction using Graph Convolutional Networks. NIPS 2017. paper
Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification. IJCAI 2018. paper
Modeling polypharmacy side effects with graph convolutional networks. ISMB 2018. paper
MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions. IJCAI 2019. paper
Pre-training of Graph Augmented Transformers for Medication Recommendation. IJCAI 2019. paper
GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination. AAAI 2019. paper
AffinityNet: semi-supervised few-shot learning for disease type prediction. AAAI 2019. paper
Graph Transformation Policy Network for Chemical Reaction Prediction. KDD 2019. paper
Functional Transparency for Structured Data: a Game-Theoretic Approach. ICML 2019. paper
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization. ICLR 2019. paper
A Generative Model For Electron Paths. ICLR 2019. paper
John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato.
Modeling Relational Data with Graph Convolutional Networks. ESWC 2018. paper
Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. EMNLP 2018. paper
Zhichun Wang, Qingsong Lv, Xiaohan Lan, Yu Zhang.
Representation learning for visual-relational knowledge graphs. arxiv 2017. paper
Daniel Oñoro-Rubio, Mathias Niepert, Alberto García-Durán, Roberto González, Roberto J. López-Sastre.
End-to-end Structure-Aware Convolutional Networks for Knowledge Base Completion. AAAI 2019. paper
Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, Bowen Zhou.
Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach. IJCAI 2017. paper
Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, Yuji Matsumoto.
Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding. AAAI 2019. paper
Peifeng Wang, Jialong Han, Chenliang Li, Rong Pan.
Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams. CVPR 2018. paper
Haoyu Wang, Defu Lian, Yong Ge.
Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks. KDD 2019. paper
Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, Christos Faloutsos.
OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. KDD 2019. paper
Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang, Bin Shao, Rui Li, Kuansan Wang.
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs. ACL 2019. paper
Deepak Nathani, Jatin Chauhan, Charu Sharma, Manohar Kaul.
Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network. ACL 2019. paper
Graph Convolutional Neural Networks for Web-Scale Recommender Systems. KDD 2018. paper
Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec.
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. NIPS 2017. paper
Federico Monti, Michael M. Bronstein, Xavier Bresson.
Graph Convolutional Matrix Completion. 2017. paper
Rianne van den Berg, Thomas N. Kipf, Max Welling.
STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems. IJCAI 2019. paper
Jiani Zhang, Xingjian Shi, Shenglin Zhao, Irwin King.
Binarized Collaborative Filtering with Distilling Graph Convolutional Networks. IJCAI 2019. paper
Session-based Recommendation with Graph Neural Networks. AAAI 2019. paper
Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks. AAAI 2019. paper
Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. KDD 2019. paper
Exact-K Recommendation via Maximal Clique Optimization. KDD 2019. paper
KGAT: Knowledge Graph Attention Network for Recommendation. KDD 2019. paper
Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. paper
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. WWW 2019. paper
Graph Neural Networks for Social Recommendation. WWW 2019. paper
Graph Neural Networks for Object Localization. ECAI 2006. paper
Learning Human-Object Interactions by Graph Parsing Neural Networks. ECCV 2018. paper
Learning Conditioned Graph Structures for Interpretable Visual Question Answering. NeurIPS 2018. paper
Symbolic Graph Reasoning Meets Convolutions. NeurIPS 2018. paper
Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, Eric P. Xing.
Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering. NeurIPS 2018. paper
Medhini Narasimhan, Svetlana Lazebnik, Alexander Schwing.
Structural-RNN: Deep Learning on Spatio-Temporal Graphs. CVPR 2016. paper
Relation Networks for Object Detection. CVPR 2018. paper
Learning Region features for Object Detection. ECCV 2018. paper
The More You Know: Using Knowledge Graphs for Image Classification. CVPR 2017. paper
Understanding Kin Relationships in a Photo. TMM 2012. paper
Graph-Structured Representations for Visual Question Answering. CVPR 2017. paper
Damien Teney, Lingqiao Liu, Anton van den Hengel.
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018. paper
Sijie Yan, Yuanjun Xiong, Dahua Lin.
Dynamic Graph CNN for Learning on Point Clouds. CVPR 2018. paper
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon.
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR 2018. paper
Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas.
3D Graph Neural Networks for RGBD Semantic Segmentation. CVPR 2017. paper
Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, Raquel Urtasun.
Iterative Visual Reasoning Beyond Convolutions. CVPR 2018. paper
Xinlei Chen, Li-Jia Li, Li Fei-Fei, Abhinav Gupta.
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. CVPR 2017. paper
Martin Simonovsky, Nikos Komodakis.
Situation Recognition with Graph Neural Networks. ICCV 2017. paper
Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, Sanja Fidler.
Deep Reasoning with Knowledge Graph for Social Relationship Understanding. IJCAI 2018. paper
Zhouxia Wang, Tianshui Chen, Jimmy Ren, Weihao Yu, Hui Cheng, Liang Lin.
I Know the Relationships: Zero-Shot Action Recognition via Two-Stream Graph Convolutional Networks and Knowledge Graphs. AAAI 2019. paper
Junyu Gao, Tianzhu Zhang, Changsheng Xu.
自然语言处理
Conversation Modeling on Reddit using a Graph-Structured LSTM. TACL 2018. paper
Vicky Zayats, Mari Ostendorf.
Learning Graphical State Transitions. ICLR 2017. paper
Daniel D. Johnson.
Multiple Events Extraction via Attention-based Graph Information Aggregation. EMNLP 2018. paper
Xiao Liu, Zhunchen Luo, Heyan Huang.
Recurrent Relational Networks. NeurIPS 2018. paper
Rasmus Palm, Ulrich Paquet, Ole Winther.
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015. paper
Kai Sheng Tai, Richard Socher, Christopher D. Manning.
Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. EMNLP 2017. paper
Diego Marcheggiani, Ivan Titov.
Graph Convolutional Networks with Argument-Aware Pooling for Event Detection. AAAI 2018. paper
Thien Huu Nguyen, Ralph Grishman.
Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks. NAACL 2018. paper
Diego Marcheggiani, Joost Bastings, Ivan Titov.
Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks. 2018. paper
Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, Daniel Gildea.
Graph Convolution over Pruned Dependency Trees Improves Relation Extraction. EMNLP 2018. paper
Yuhao Zhang, Peng Qi, Christopher D. Manning.
N-ary relation extraction using graph state LSTM. EMNLP 18. paper
Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea.
A Graph-to-Sequence Model for AMR-to-Text Generation. ACL 2018. paper
Linfeng Song, Yue Zhang, Zhiguo Wang, Daniel Gildea.
Graph-to-Sequence Learning using Gated Graph Neural Networks. ACL 2018. paper
Daniel Beck, Gholamreza Haffari, Trevor Cohn.
Cross-Sentence N-ary Relation Extraction with Graph LSTMs. TACL. paper
Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, Wen-tau Yih.
Sentence-State LSTM for Text Representation. ACL 2018. paper
Yue Zhang, Qi Liu, Linfeng Song.
End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. ACL 2016. paper
Makoto Miwa, Mohit Bansal.
Graph Convolutional Encoders for Syntax-aware Neural Machine Translation. EMNLP 2017. paper
Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, Khalil Sima'an.
Semi-supervised User Geolocation via Graph Convolutional Networks. ACL 2018. paper
Afshin Rahimi, Trevor Cohn, Timothy Baldwin.
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering. COLING 2018. paper
Daniil Sorokin, Iryna Gurevych.
Graph Convolutional Networks for Text Classification. AAAI 2019. paper
Liang Yao, Chengsheng Mao, Yuan Luo.
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. NeurIPS 2018. paper
Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec.
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders. NeurIPS 2018. paper
Tengfei Ma, Jie Chen, Cao Xiao.
Learning deep generative models of graphs. ICLR Workshop 2018. paper
Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter Battaglia.
MolGAN: An implicit generative model for small molecular graphs. 2018. paper
Nicola De Cao, Thomas Kipf.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. ICML 2018. paper
Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec.
NetGAN: Generating Graphs via Random Walks. ICML 2018. paper
Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, Stephan Günnemann.
Graphite: Iterative Generative Modeling of Graphs. ICML 2019. paper
Aditya Grover, Aaron Zweig, Stefano Ermon.Generative Code Modeling with Graphs. ICLR 2019. paper
Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, Oleksandr Polozov.
组合优化
Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. NeurIPS 2018. paper
Zhuwen Li, Qifeng Chen, Vladlen Koltun.
Learning a SAT Solver from Single-Bit Supervision. ICLR 2019. paper
Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, David L. Dill.
A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks. PADL 2017. paper
Alex Nowak, Soledad Villar, Afonso S. Bandeira, Joan Bruna.
Attention Solves Your TSP, Approximately. 2018. paper
Wouter Kool, Herke van Hoof, Max Welling.
Learning to Solve NP-Complete Problems - A Graph Neural Network for Decision TSP. AAAI 2019. paper
Marcelo O. R. Prates, Pedro H. C. Avelar, Henrique Lemos, Luis Lamb, Moshe Vardi.
DAG-GNN: DAG Structure Learning with Graph Neural Networks. ICML 2019. paper
Yue Yu, Jie Chen, Tian Gao, Mo Yu.
对抗攻击
Adversarial Attacks on Neural Networks for Graph Data. KDD 2018. paper
Daniel Zügner, Amir Akbarnejad, Stephan Günnemann.
Adversarial Attack on Graph Structured Data. ICML 2018. paper
Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, Le Song.
Adversarial Examples on Graph Data: Deep Insights into Attack and Defense. IJCAI 2019. paper
Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, Liming Zhu.
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. IJCAI 2019. paper
Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin.
Robust Graph Convolutional Networks Against Adversarial Attacks. KDD 2019. paper
Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu.
Certifiable Robustness and Robust Training for Graph Convolutional Networks. KDD 2019. paper
Daniel Zügner, Stephan Günnemann.
Adversarial Attacks on Node Embeddings via Graph Poisoning. ICML 2019. paper
Aleksandar Bojchevski, Stephan Günnemann.
Adversarial Attacks on Graph Neural Networks via Meta Learning. ICLR 2019. paper
Daniel Zügner, Stephan Günnemann.
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks. ICLR 2019. paper
Jan Svoboda, Jonathan Masci, Federico Monti, Michael Bronstein, Leonidas Guibas.
Graph Clustering 图聚类
Attributed Graph Clustering: A Deep Attentional Embedding Approach. IJCAI 2019. paper
Attributed Graph Clustering via Adaptive Graph Convolution. IJCAI 2019. paper
Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing. ICML 2018. paper
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective. WWW 2019. paper
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels. WWW 2019. paper
Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity. IJCAI 2019. paper
NerveNet: Learning Structured Policy with Graph Neural Networks. ICLR 2018. paper
Tingwu Wang, Renjie Liao, Jimmy Ba, Sanja Fidler.
Structured Dialogue Policy with Graph Neural Networks. ICCL 2018. paper
Lu Chen, Bowen Tan, Sishan Long, Kai Yu.
Relational inductive bias for physical construction in humans and machines. CogSci 2018. paper
Relational Deep Reinforcement Learning. arxiv 2018. paper
Playing Text-Adventure Games with Graph-Based Deep Reinforcement Learning. NAACL 2019. paper
Spatiotemporal Multi‐Graph Convolution Network for Ride-hailing Demand Forecasting. AAAI 2019. paper
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. AAAI 2019. paper
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. arxiv 2018. paper
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI 2018. paper
Bing Yu, Haoteng Yin, Zhanxing Zhu.
Origin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand Modeling. KDD 2019. paper
Predicting Path Failure In Time-Evolving Graphs. KDD 2019. paper
Stochastic Weight Completion for Road Networks using Graph Convolutional Networks. ICDE 2019. paper
Passenger Demand Forecasting. IJCAI 2019. paper
Lei Bai, Lina Yao, Salil.S Kanhere, Xianzhi Wang, Quan.Z Sheng.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. IJCAI 2019. paper
Few-Shot Learning with Graph Neural Networks. ICLR 2018. paper
Prototype Propagation Networks (PPN) for Weakly-supervised Few-shot Learning on Category Graph. IJCAI 2019. paper
Edge-labeling Graph Neural Network for Few-shot Learning. CVPR 2019. paper
Generating Classification Weights with GNN Denoising Autoencoders for Few-Shot Learning. CVPR 2019. paper
Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. CVPR 2018. paper
Xiaolong Wang, Yufei Ye, Abhinav Gupta.
Rethinking Knowledge Graph Propagation for Zero-Shot Learning. CVPR 2019. paper
Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, Eric P. Xing.
Multi-Label Zero-Shot Learning with Structured Knowledge Graphs. CVPR 2018. paper
Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, Yu-Chiang Frank Wang.
Relational inductive bias for physical construction in humans and machines. CogSci 2018. paper
Relational Deep Reinforcement Learning. arxiv 2018. paper
Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, Peter Battaglia.
Action Schema Networks: Generalised Policies with Deep Learning. AAAI 2018. paper
Learning to Represent Programs with Graphs. ICLR 2018. paper
Open Vocabulary Learning on Source Code with a Graph-Structured Cache. ICML 2019. paper
Social Network 社交网络
DeepInf: Social Influence Prediction with Deep Learning. KDD 2018. paper
Characterizing and Forecasting User Engagement with In-app Action Graph: A Case Study of Snapchat. KDD 2019. paper
MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network.KDD 2019. paper
Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, Wen Su.
Is a Single Vector Enough? Exploring Node Polysemy for Network Embedding. KDD 2019. paper
Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media.ACL 2019. paper
Chang Li, Dan Goldwasser.
Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks. IJCAI 2019. paper
Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, Philip S. Yu.
-END-
编辑:王菁
校对:林亦霖
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。