赞
踩
Inception模型的组成主要由不同卷积核大小的卷积层拼接而成,其中一种带维度缩减的Inception模型可以减少参数量,引入更多非线性,提高泛化能力,其核心思想是引入1卷积核大小为1*1的卷积层并经过ReLU激活函数提高了模型的泛化能力,通过控制通道数可以减少特征层的“厚度”
参考链接:https://arxiv.org/abs/1409.4842.pdf
(1)先定义一个基础卷积块,用于输入不同的卷积核大小
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False,
**kwargs)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
(2)设置不同的卷积层并合并
class InceptionBasicBlock(nn.Module): def __init__(self, in_channels, pool_features): super().__init__() self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1) self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2) self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1) self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1) self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return torch.cat(outputs, 1)
使用tensorboard观察结构图:
imgs_batch = torch.randn((8, 3, 224, 244))
inceptionblock = InceptionBasicBlock(3, 16)
pred_batch = inceptionblock(imgs_batch)
print(pred_batch.shape)
writer = SummaryWriter('my_log/inception')
writer.add_graph(inceptionblock, imgs_batch)
# 在promote中输入tensorboard --logdir path --host=127.0.0.1 ,path绝对路径不用加双引号,按照提示打开tensorboard
输出如下:
torch.Size([8, 240, 224, 244])
inception_model = torchvision.models.inception_v3(pretrained=False)
print(inception_model)
输出如下:
Inception3( (Conv2d_1a_3x3): BasicConv2d( (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (Conv2d_2a_3x3): BasicConv2d( (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (Conv2d_2b_3x3): BasicConv2d( (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (maxpool1): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) (Conv2d_3b_1x1): BasicConv2d( (conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (Conv2d_4a_3x3): BasicConv2d( (conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (maxpool2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) (Mixed_5b): InceptionA( (branch1x1): BasicConv2d( (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch5x5_1): BasicConv2d( (conv): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch5x5_2): BasicConv2d( (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_1): BasicConv2d( (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_2): BasicConv2d( (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3): BasicConv2d( (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_5c): InceptionA( (branch1x1): BasicConv2d( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch5x5_1): BasicConv2d( (conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch5x5_2): BasicConv2d( (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_1): BasicConv2d( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_2): BasicConv2d( (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3): BasicConv2d( (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_5d): InceptionA( (branch1x1): BasicConv2d( (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch5x5_1): BasicConv2d( (conv): Conv2d(288, 48, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch5x5_2): BasicConv2d( (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_1): BasicConv2d( (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_2): BasicConv2d( (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3): BasicConv2d( (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_6a): InceptionB( (branch3x3): BasicConv2d( (conv): Conv2d(288, 384, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_1): BasicConv2d( (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_2): BasicConv2d( (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3): BasicConv2d( (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_6b): InceptionC( (branch1x1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_1): BasicConv2d( (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_2): BasicConv2d( (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_3): BasicConv2d( (conv): Conv2d(128, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_1): BasicConv2d( (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_2): BasicConv2d( (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_3): BasicConv2d( (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_4): BasicConv2d( (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_5): BasicConv2d( (conv): Conv2d(128, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_6c): InceptionC( (branch1x1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_1): BasicConv2d( (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_2): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_3): BasicConv2d( (conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_1): BasicConv2d( (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_2): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_3): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_4): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_5): BasicConv2d( (conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_6d): InceptionC( (branch1x1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_1): BasicConv2d( (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_2): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_3): BasicConv2d( (conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_1): BasicConv2d( (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_2): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_3): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_4): BasicConv2d( (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_5): BasicConv2d( (conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_6e): InceptionC( (branch1x1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_2): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7_3): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_2): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_3): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_4): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7dbl_5): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (AuxLogits): InceptionAux( (conv0): BasicConv2d( (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (conv1): BasicConv2d( (conv): Conv2d(128, 768, kernel_size=(5, 5), stride=(1, 1), bias=False) (bn): BatchNorm2d(768, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (fc): Linear(in_features=768, out_features=1000, bias=True) ) (Mixed_7a): InceptionD( (branch3x3_1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3_2): BasicConv2d( (conv): Conv2d(192, 320, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7x3_1): BasicConv2d( (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7x3_2): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7x3_3): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch7x7x3_4): BasicConv2d( (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_7b): InceptionE( (branch1x1): BasicConv2d( (conv): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3_1): BasicConv2d( (conv): Conv2d(1280, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3_2a): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3_2b): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_1): BasicConv2d( (conv): Conv2d(1280, 448, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_2): BasicConv2d( (conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3a): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3b): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(1280, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (Mixed_7c): InceptionE( (branch1x1): BasicConv2d( (conv): Conv2d(2048, 320, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3_1): BasicConv2d( (conv): Conv2d(2048, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3_2a): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3_2b): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_1): BasicConv2d( (conv): Conv2d(2048, 448, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_2): BasicConv2d( (conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3a): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch3x3dbl_3b): BasicConv2d( (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False) (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) (branch_pool): BasicConv2d( (conv): Conv2d(2048, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True) ) ) (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) (dropout): Dropout(p=0.5, inplace=False) (fc): Linear(in_features=2048, out_features=1000, bias=True) )
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。