赞
踩
引言:人类以为的丰功伟绩,不过是开端的开端……我们在未来100年取得的技术进步,将远超我们从控制火种到发明车轮以来所取得的一切成就。——By Sam Altman
说明:ChatGPT发布后,我第一时间体验了它的对话、翻译、编程、写作效果。随着一行行绿色的字快速地跳出来……一种触发了神秘力量的感觉,我预感到,一个更高维的庞然大物出现了。这样的现象级事物,可能对各行业都影响巨大,即使盲人摸象,也值得摸一摸吧。遂陆续收集了国内外100+文章和报告,趁春节假期稍微整理,分享给大家。整理后发现文章太长,计划分成上篇《背景+技术篇》,下篇会是《产品+商业篇》,so,快来催更呀~
01. 背景篇
**1.1 ChatGPT和OpenAI是什么?
**
ChatGPT是什么?
ChatGPT是由美国顶尖AI实验室OpenAI开发的一个人工智能聊天机器人程序,2022年11月上线,上线不到一周就突破100万用户。该程序使用基于GPT-3.5架构的大语言模型并通过强化学习进行训练,
OpenAI是什么?
OpenAI 是美国的AI实验室,非营利组织,定位是促进和发展友好的人工智能,使人类整体受益。OpenAI成立于2015年底,创始人是伊隆·马斯克以及前YC 总裁Sam Altman。
Sam Altman是谁?
马斯克就不用介绍了~ Samuel Altman,85年出生的美国人,斯坦福大学计算机系辍学创业的极客。美国知名风投机构YC的总裁,硅谷创业教父Paul Graham的继承人。如果你还不知道YC,你可能知道一个名人:YC的海外站——YC中国(现已更名奇绩创坛)总裁正是鼎鼎大名的陆奇。
OpenAI发展历程(主要来自维基百科)
2015年底,OpenAI成立,组织目标是通过与其他机构和研究者的“自由合作”,向公众开放专利和研究成果。2016年,OpenAI宣称将制造“通用”机器人,希望能够预防人工智能的灾难性影响,推动人工智能发挥积极作用。2019年3月1日成立OpenAI LP子公司,目标是盈利和商业化。2019年7月22日微软投资OpenAI 10亿美元,双方合作为Azure(微软的云服务)开发人工智能技术。2020年6月11日宣布了GPT-3语言模型,微软于2020年9月22日取得独家授权。2022年11月30日,OpenAI发布了名为ChatGPT的自然语言生成式模型,以对话方式进行交互。2023年1月:微软和OpenAI洽谈投资100亿美元事宜,并希望将OpenAI的人工智能技术纳入Word、Outlook、Powerpoint和其他应用程序中。
02 技术篇
2.1 ChatGPT的核心竞争力
从AI的三大核心要素:数据、算法、算力作简要整理分析。另外,在一个新事物的早期,其创始人的初心和愿景也非常值得关注,因此还增加一层——理念层的分析。
数据层:
在有3000亿单词的语料上预训练拥有1750亿参数的模型(训练语料的60%来自于 2016 - 2019 的 C4 + 22% 来自于 WebText2 + 16% 来自于Books + 3%来自于Wikipedia)。
算法层:
基于人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF) 的威力翔实的回应:text-davinci-003 的生成通常比 text-davinci-002长([29)(]) 。ChatGPT 的回应则更加冗长,以至于用户必须明确要求“用一句话回答我”,才能得到更加简洁的回答。这是 RLHF 的直接产物。公正的回应:ChatGPT 通常对涉及多个实体利益的事件(例如政治事件)给出非常平衡的回答。这也是RLHF的产物。拒绝不当问题:这是内容过滤器和由 RLHF 触发的模型自身能力的结合,过滤器过滤掉一部分,然后模型再拒绝一部分。拒绝其知识范围之外的问题:例如,拒绝在2021 年 6 月之后发生的新事件(因为它没在这之后的数据上训练过)。这是 RLHF 最神奇的部分,因为它使模型能够隐式地区分哪些问题在其知识范围内,哪些问题不在其知识范围内。——By 符尧 《万字拆解ChatGTP技术路线图》
算力层:
ChatGPT 的背后离不开大模型、大数据、大算力。ChatGPT 成为 AIGC 里程碑的背后,是算力发展和数字时代形成的大数据所共同支持的大模型训练,才能实现目前的效果。由 OpenAI 研发的 ChatGPT 是微调后的 GPT-3.5系列模型,有着多达 1750 亿个模型参数,并在今年年初训练完成。模型训练的背后离不开大数据的支持,OpenAI 主要使用的公共爬虫数据集有着超过万亿单词的人类语言数据集。在算力方面,GPT-3.5 在 Azure AI 超算基础设施(由 V100GPU 组成的高带宽集群)上进行训练,总算力消耗约 3640 PF-days(即每秒一千万亿次计算,运行 3640 天)。
理念层:
2.2 GPT进化历程
模型维度(By 符尧)
大模型技术架构演进
研发大模型的金主们
数据量和大模型表现统计图
大模型为什么如此全能?
2.3 ChatGPT体验和分析
体验层面分析:近乎真人一样的理解能力,模型的鲁棒性非常好。经过道德训练,不评价人,你很难抓住它的把柄。如果没有这一条,chatGTP早被玩坏了,一堆的威胁论和口水战足以让它下线。更重fact,而不是opinion。你好像在跟一个理智而不是情绪主导的朋友聊天。中文略逊于英文。如果你让它作一首十四行诗,你会被漂亮的押韵惊讶到。如果许渊冲在世,这个爱玩中英法押韵的老人家估计能找到对手了。不了解2022年之后的世界。比如2022年卡塔尔世界杯,它会很老实地说自己不知道2022年之后的世界。这可能也是ChatGTP逊色于搜索引擎最大的地方。毕竟,一年的信息Gap足以让很多知识大打折扣。最后,如果你在问题里埋了陷阱,你可能会发现它在一本正经地胡说八道。
技术层分析(By 张俊林):ChatGPT的最大贡献在于:基本实现了理想LLM(大语言模型)的接口层,让LLM适配人的习惯命令表达方式,而不是反过来让人去适配LLM,绞尽脑汁地想出一个能Work的命令(这就是instruct技术出来之前,prompt技术在做的事情),而这增加了LLM的易用性和用户体验。是InstructGPT/ChatGPT首先意识到这个问题,并给出了很好的解决方案,这也是它最大的技术贡献。相对之前的few shot prompting,它是一种更符合人类表达习惯的人和LLM进行交互的人机接口技术。GTP/BERT这样的大模型出现后,可能导致一部分中间任务消亡。典型的中间任务包括:中文分词、词性标注、NER、句法分析、指代消解、语义Parser等,这类任务一般并不解决应用中的实际需求,大多数是作为那些解决实际需求任务的中间阶段或者辅助阶段存在的。自从Bert/GPT出现之后,其实就没有必要做这些中间任务了,因为通过大量数据的预训练,Bert/GPT已经把这些中间任务作为语言学特征,吸收到了Transformer的参数里,此时我们完全可以端到端地直接解决那些最终任务,而无须对这种中间过程专门建模。这点从统计机器翻译到神经网络机器翻译也有类似发展过程。
局限和弱点分析:以下是不同渠道的一些局限分析:指标缺陷:其奖励模型围绕人类监督而设计,可能导致过度优化,从而影响性能,这种如何确定衡量指标的难题在它身上也少不了。就像机器翻译的Bleu值,一直被吐槽,但找不到更好更方便的评估方式。无法实时改写模型的信念:当模型表达对某个事物的信念时,即使该信念是错误的,也很难纠正它。这,简直就像一个倔强的老头。知识非实时更新:模型的内部知识停留在2021年,对2022年之后的新闻没有纳入。这点在体验层面也说到了。模态单一:目前的ChatGPT擅长NLP和Code任务,作为通向AGI的重要种子选手,将图像、视频、音频等图像与多模态集成进入LLM,乃至AI for Science、机器人控制等更多、差异化更明显的其它领域逐步纳入LLM,是LLM通往AGI的必经之路。而这个方向才刚刚开始,因此具备很高的研究价值。高成本:超级大模型因为模型规模大,所以训练成本过高,导致很少有机构有能力去做这件事。
结语,一些非结构化的感想
(LanguageX的多机翻引擎阵列)
预告:如果催更力度达到一定阈值, 还会整理一篇产品和商业视角的ChatGPT~
One more thing,福利:
1、有5个比较值得研读的AIGC报告,在本公众号后台回复“chatgpt”可下载;
附:名词解释
AIGC:AI Generated Content ,人工智能自动生成内容NLP:Natural Language Processing,自然语言处理LLM:Large language model,大语言模型AGI:Artificial general intelligence,通用人工智能Prompt:提示词Fine-tuning:模型调优ML:Machine Learning,机器学习DL:Deep Learning,深度学习GPU:Graphics Processing Unit ,深度学习用的显卡BERT:Bidirectional Encoder Representations from Transformers”,双向编码器表示RLHF:Reinforcement Learning from Human Feedback,基于人类反馈的强化学习
一些信息量较大的延伸阅读:
OpenAI章程:https://openai.com/charter/红杉资本:生成式AI,一个创意新世界 https://www.sequoiacap.com/article/generative-ai-a-creative-new-world/2022年32篇最佳AI论文 https://hub.baai.ac.cn/view/22798万字拆解GTP技术路线图 https://mp.weixin.qq.com/s/7N3HveaIfn2N-zKjBoRL1A吴恩达的2022年终盘点:生成式AI、ViT、大模型 https://mp.weixin.qq.com/s/nagtjtYD98OlJlyddt78Aw一文带你了解生成式AI:https://mp.weixin.qq.com/s/ZE-nyGnCx-bLXwf2rhraTA陈巍谈芯:ChatGPT特点、原理、技术架构和产业未来 https://zhuanlan.zhihu.com/p/590655677OpenAI CEO Sam Altman:AI 将是移动互联网后新的基础平台https://mp.weixin.qq.com/s/hwfk1j33uLsbiDUA89p9vA爆火的chatGPT,和它的前世今生:https://m.huxiu.com/article/733716.html关于微软和OpenAI,以及GPT的那些事 Generative AI is here: How tools like ChatGPT could change your business基于ChatGTP的项目:https://www.zhihu.com/question/570189639/answer/2793888150通向AGI之路:大型语言模型(LLM)技术精要 https://zhuanlan.zhihu.com/p/597586623
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。