当前位置:   article > 正文

python3中情感分类_python中的情感分类

post_sentiment

python3中情感分类

This post is the last of the three sequential posts on steps to build a sentiment classifier. Having done some exploratory text analysis and preprocessed the text, it’s time to classify reviews to sentiments. In this post, we will first look at 2 ways to get sentiments without building a model then build a custom model.

这篇文章是关于建立情感分类器的三个连续文章中的最后一篇。 经过一些探索性的文本分析预处理了文本 ,是时候对评论进行分类了。 在本文中,我们将首先探讨两种无需构建模型即可获得情感的方法,然后构建自定义模型。

Before we dive in, let’s take a step back and look at the bigger picture really quickly. CRISP-DM methodology outlines the process flow for a successful data science project. In this post, we will do some of the tasks that a data scientist would go through during the modelling stage.

在我们深入之前,让我们退后一步,真正快速地了解大局。 CRISP-DM方法论概述了成功的数据科学项目的流程。 在本文中,我们将完成数据科学家在建模阶段要完成的一些任务。

Image for post
Extract from CRISP-DM process flow
摘自CRISP-DMCraft.io流程

0. Python设置 (0. Python setup)

This post assumes that the reader (

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/354761
推荐阅读
相关标签