当前位置:   article > 正文

如何搭建神经网络模型,构建神经网络模型方法_如何构建神经网络模型

如何构建神经网络模型

英伟达开发板功能

英伟达开发板功能:Jetson Nano 是一款功能强大的人工智能(AI)开发板,可助你快速入门学习 AI 技术,并将其应用到各种智能设备。

它搭载四核Cortex-A57处理器,128核Maxwell GPU及4GB LPDDR内存,拥有足够的AI算力,可以并行运行多个神经网络,适用于需要图像分类、目标检测、分割、语音处理等功能的AI应用。

英伟达开发板功能介绍它支持NVIDIA JetPack,其中包括用于深度学习,计算机视觉,GPU计算,多媒体处理,CUDA,cuDNN和TensorRT等软件库,以及其他一系列流行的AI框架和算法,比如TensorFlow,PyTorch,Caffe / Caffe2,Keras,MXNet等。

谷歌人工智能写作项目:神经网络伪原创

神经网络如何用单片机实现?

用单片机开发神经网络应用主要考虑三个方向:1)网络本身,神网本质上是一组矩阵,矩阵在单片机中的表现可以通过数组来实现;2)输入输出,神网的应用就是把输入阵列与网络本身的矩阵点乘叉乘后算术求和,产生输出矩阵,把输入输出的算法做到单片机里也不是难事;3)训练,神网的权值矩阵都是训练出来的,采用诸如前向或反向的算法,可以做离线也可以做在线,如果做离线就没有必要把算法实现在单片机内,PC上就可以做,然后导入矩阵即可;如果做在线则是相对较难的技术,需要在单片机上实现,对于单片机本身的资源要求也较高文案狗

简单说,1)是基础,也最容易;1)+2)就已经是神经网络的应用了,也容易实现;1)+2)+Matlab神经网络离线训练是易于实现,且富有弹性的应用方式;1)+2)+在线训练基本上就是具备自己学习能力的机器人,这是学术界一直探索的方向。

希望能给你一些启发,研究神网对我来说已经是五六年前的过去了,还是很怀念那时候的激情,个人认为这将是二十一世纪后期最有影响力的技术之一。

如何把电脑训练好的神经网络移植到app上

有两个思

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/372449
推荐阅读
相关标签
  

闽ICP备14008679号