当前位置:   article > 正文

神经网络如何防止过拟合,人工神经网络过拟合_matlab神经网络防止过拟合

matlab神经网络防止过拟合

神经网络,什么过拟合?,什么是欠拟合?

欠拟合是指模型不能在训练集上获得足够低的误差。而过拟合是指训练误差和测试误差之间的差距太大。相关介绍:人工神经网络(ANN)或联结主义系统是受构成动物大脑的生物神经网络的启发但不完全相同的计算系统。

这种系统通过例子来“学习”执行任务,而不用特定于任务的规则进行编程。

例如,在图像识别中,人工神经网络可能会通过分析一些图像样本来学习识别包含猫的图像,这些图像被手工标记为“猫”或“不是猫”,并使用结果识别在其他图像中的猫。

他们这样做是在没有猫的任何先验知识的情况下进行的,例如,它们有毛皮,尾巴,胡须和类似猫的脸。相反,人工神经网络会自动从它们处理的学习材料中生成识别特征。

人工神经网络是基于称为人工神经元的连接单元或节点所构成的集合,这些单元或节点松散地模拟生物大脑中的神经元。像生物大脑中的突触一样,每个连接可以将信号从一个人工神经元传输到另一个人工神经元。

接收信号的人工神经元可以对其进行处理,然后向与之相连的附加人造神经元发出信号。

机器学习中怎么解决过拟合的问题?

如何防止神经网络过拟合,用什么方法可以防止?

你这个问题本来就问的很模糊,你是想问神经网络的过拟合变现什么样还是为什么出现过拟合呢。

为此针对于第一个问题,神经网络的过拟合与支持向量机、高斯混合模型等建模方法的过拟合类似,表现为针对于训练数据集的建模效果很好,而对于测试数据集的建模效果很差,因为过于强大的学习

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/766982
推荐阅读
相关标签
  

闽ICP备14008679号