赞
踩
目录
MINIST数据集是有标签的图像数据,图像数据是0-9的手写阿拉伯数字。其中,训练集有6W个,测试集1W个。
目的是训练一个可以高效识别手写阿拉伯数字的模型。
涉及到的mindspore接口 mindspore.dataset。例如对数据集的map、batch、shuffle等操作,数据列名获取,对数据集进行迭代访问、查看数据和标签的shape和datatype等。
涉及到 mindspore.nn 类。例如用户可继承nn.Cell类来
自定义网络结构,其中的construct类函数
包含数据(Tensor)的变换过程。。
包括损失函数、优化器等。如 nn.CrossEntropyLoss() 、nn.SGD(model.trainable_params(), 1e-2)
- 定义训练函数,用set_train设置为训练模式,执行正向计算、反向传播和参数优化。
- 定义测试函数,用来评估模型的性能。
- 两种保存方式:
1)模型参数保存:mindspore.save_checkpoint(model, "model.ckpt")
2)统一的中间表示(Intermediate Representation,IR)的保存,MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。mindspore.export(model, inputs, file_name="model", file_format="MINDIR")
- 两种加载方式:
1)模型参数加载:
> model = network()
> param_dict = mindspore.load_checkpoint("model.ckpt");
> param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
2)统一的中间表示(Intermediate Representation,IR)的加载:
> mindspore.set_context(mode=mindspore.GRAPH_MODE) > graph = mindspore.load("model.mindir") > model = nn.GraphCell(graph) ## nn.GraphCell 仅支持图模式。 > outputs = model(inputs)
MindSpore 通过对外暴露API层来构建数据图;内部的Data Processing Pipeline 层用来进行数据加载和预处理多步并行流水线。
高性能数据处理引擎 — MindSpore master 文档
MindSpore 通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。
数据集 Dataset — MindSpore master 文档
数据变换 Transforms — MindSpore master 文档
Initializer
是MindSpore内置的参数初始化基类,所有内置参数初始化方法均继承该类。mindspore.nn
中提供的神经网络层封装均提供weight_init
、bias_init
等入参,可以直接使用实例化的Initializer进行参数初始化。
pip/conda均可:
pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1
训练:
python self_main_train_and_save.py
推理:
python self_predict.py
- import mindspore
- from mindspore import nn
- from mindspore.dataset import vision, transforms
- from mindspore.dataset import MnistDataset
-
- # 用download库从公开华为云obs桶下载 MINIST 数据集并解压。因为mindspore.dataset 提供的接口仅支持解压后的数据文件
- from download import download
- url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip"
- path = download(url, "./", kind="zip", replace=True)
-
- ## 1 加载数据集
- train_dataset = MnistDataset('MNIST_Data/train', shuffle=False)
- test_dataset = MnistDataset('MNIST_Data/test')
- print(train_dataset.get_col_names()) # 打印数据集中包含的数据列名,用于dataset的预处理。输出['image', 'label']
-
-
- ## 2 MindSpore的dataset使用数据处理流水线,这里将处理好的数据集打包为大小为64的batch。
- from self_dataprocess import datapipe
- # Map vision transforms and batch dataset
- train_dataset = datapipe(train_dataset, 64)
- test_dataset = datapipe(test_dataset, 64)
-
- ## 3 数据集加载后,一般以迭代方式获取数据,然后送入神经网络中进行训练。可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。
- for image, label in test_dataset.create_tuple_iterator():
- print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
- print(f"Shape of label: {label.shape} {label.dtype}")
- break
- “”“
- Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
- Shape of label: (64,) Int32
- ”“”
- for data in test_dataset.create_dict_iterator():
- print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
- print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
- break
-
-
- ## 4 模型训练
- from self_network import Network
- from self_modeltrain import train, loss_fn
- from self_modelteset import test
- model = Network()
- epochs = 3
- for t in range(epochs):
- print(f"Epoch {t+1}\n-------------------------------")
- train(model, train_dataset)
- test(model, test_dataset, loss_fn)
- print("Done!")
-
-
- ## 5 保存模型
- # Save checkpoint
- mindspore.save_checkpoint(model, "model.ckpt")
- print("Saved Model to model.ckpt")

self_dataprocess.py
- from mindspore.dataset import vision, transforms
- def datapipe(dataset, batch_size):
- image_transforms = [
- vision.Rescale(1.0 / 255.0, 0),
- vision.Normalize(mean=(0.1307,), std=(0.3081,)),
- vision.HWC2CHW()
- ]
- label_transform = transforms.TypeCast(mindspore.int32)
- dataset = dataset.map(image_transforms, 'image')
- dataset = dataset.map(label_transform, 'label')
- dataset = dataset.batch(batch_size)
- return dataset
- # Define model
- from mindspore import nn
-
- class Network(nn.Cell):
- def __init__(self):
- super().__init__()
- self.flatten = nn.Flatten()
- self.dense_relu_sequential = nn.SequentialCell(
- nn.Dense(28*28, 512),
- nn.ReLU(),
- nn.Dense(512, 512),
- nn.ReLU(),
- nn.Dense(512, 10)
- )
- def construct(self, x):
- x = self.flatten(x)
- logits = self.dense_relu_sequential(x)
- return logits
-
-
- def check_network():
- model = Network()
- print(model)

- # Instantiate loss function and optimizer
- from mindspore import nn
-
- loss_fn = nn.CrossEntropyLoss()
- optimizer = nn.SGD(model.trainable_params(), 1e-2)
-
- # 1. Define forward function
- def forward_fn(data, label):
- logits = model(data)
- loss = loss_fn(logits, label)
- return loss, logits
-
- # 2. Get gradient function
- grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
-
- # 3. Define function of one-step training
- def train_step(data, label):
- (loss, _), grads = grad_fn(data, label)
- optimizer(grads)
- return loss
-
-
- def train(model, dataset):
- size = dataset.get_dataset_size()
- model.set_train() ## 设置当前Cell和所有子Cell的训练模式。对于训练和预测具有不同结构的网络层(如 BatchNorm),将通过这个属性区分分支。如果设置为True,则执行训练分支,否则执行另一个分支。默认True
- for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
- loss = train_step(data, label)
- if batch % 100 == 0:
- loss, current = loss.asnumpy(), batch
- print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")

- from mindspore import nn
-
- def test(model, dataset, loss_fn):
- num_batches = dataset.get_dataset_size()
- model.set_train(False)
- total, test_loss, correct = 0, 0, 0
- for data, label in dataset.create_tuple_iterator():
- pred = model(data)
- total += len(data)
- test_loss += loss_fn(pred, label).asnumpy()
- correct += (pred.argmax(1) == label).asnumpy().sum()
- test_loss /= num_batches
- correct /= total
- print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
- ## 加载模型
- from self_network import Network
-
- # Instantiate a random initialized model
- model = Network()
-
- # Load checkpoint and load parameter to model
- param_dict = mindspore.load_checkpoint("model.ckpt")
- param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
- print(param_not_load) ## param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。
-
- ## 加载后的模型可以直接用于预测推理。
- model.set_train(False)
- for data, label in test_dataset:
- pred = model(data)
- predicted = pred.argmax(1)
- print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
- break

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。