赞
踩
用户名:HwHiAiUser
密码:Mind@123
#编辑sources.list文件 sudo nano /etc/apt/sources.list deb https://repo.huaweicloud.com/ubuntu-ports/ bionic main restricted universe multiverse deb-src https://repo.huaweicloud.com/ubuntu-ports/ bionic main restricted universe multiverse deb https://repo.huaweicloud.com/ubuntu-ports/ bionic-security main restricted universe multiverse deb-src https://repo.huaweicloud.com/ubuntu-ports/ bionic-security main restricted universe multiverse deb https://repo.huaweicloud.com/ubuntu-ports/ bionic-updates main restricted universe multiverse deb-src https://repo.huaweicloud.com/ubuntu-ports/ bionic-updates main restricted universe multiverse deb https://repo.huaweicloud.com/ubuntu-ports/ bionic-backports main restricted universe multiverse deb-src https://repo.huaweicloud.com/ubuntu-ports/ bionic-backports main restricted universe multiverse 保存文件:按下 Ctrl + O,然后按 Enter 确认文件名。 退出编辑器:按下 Ctrl + X。 #更新软件源: sudo apt-get update #升级软件包 sudo apt-get upgrade
用nano打开,然后添加华为源。**注意!!**需要用华为的不然有些包无法下载。
注意!!!需要全程用HwHiAiUser用户
准备软件包的版本为: Ascend-cann-toolkit_6.0.1_linux-aarch64.run(下载链接)。上传到/home/HwHiAiUser目录下
安裝依赖参考链接,然后安装python3.7.5,最后配置pip的源(最好选择华为的)参考链接
**安装python注意事项!!**测试是否安装成功
#安装依赖 sudo apt-get install -y gcc g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools libblas-dev gfortran libblas3 #安装python,任意地址下载 wget https://www.python.org/ftp/python/3.7.5/Python-3.7.5.tgz #解压源码包 tar -zxvf Python-3.7.5.tgz #进入解压后的文件夹,执行配置、编译和安装命令 cd Python-3.7.5 ./configure --prefix=/usr/local/python3.7.5 --enable-loadable-sqlite-extensions --enable-shared make sudo make install #设置python3.7.5环境变量。 #用于设置python3.7.5库文件路径 export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib:$LD_LIBRARY_PATH export PATH=/usr/local/python3.7.5/bin:$PATH #配置pip的源 mkdir ~/.pip cd ~/.pip #编辑pip.conf文件 vi pip.conf #写入以下内容: [global] #以华为源为例,请根据实际情况进行替换。 index-url = https://mirrors.huaweicloud.com/repository/pypi/simple trusted-host = mirrors.huaweicloud.com timeout = 120 #保存 :wq!
安装cann开发套件包参考链接
#以HwHiAiUser用户将开发套件包上传到Atlas 200 DK任意目录 #执行如下命令为安装包增加可执行权限。 chmod +x *.run #执行如下校验安装包的一致性和完整性。 ./Ascend-cann-toolkit_{version}_linux-aarch64.run --check #执行如下命令进行Toolkit软件包的安装。 ./Ascend-cann-toolkit_{version}_linux-aarch64.run --install #配置环境变量。 vi ~/.bashrc #写入以下内容: . /home/HwHiAiUser/Ascend/ascend-toolkit/set_env.sh #保存 :wq! #其立即生效 source ~/.bashrc
**注意!!**需要先执行–check再安装–install
配置cann的环境变量参考链接,**注意:**查看链接的$HOME/Ascend是否是. /home/HwHiAiUser/Ascend,环境变量是. /home/HwHiAiUser/Ascend/ascend-toolkit/set_env.sh
. /usr/local/Ascend/ascend-toolkit/set_env.sh
打开vi ~/.bashrc 添加. /usr/local/Ascend/ascend-toolkit/set_env.sh
安装成功后/home/HwHiAiUser目录下会出现Ascend文件
下载软件:
wget https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh
wget -c https://repo.anaconda.com/archive/Anaconda3-2021.05-Linux-aarch64.sh
安装:
chmod +x Anaconda3-2021.05-Linux-aarch64.sh ./Anaconda3-2021.05-Linux-aarch64.sh vi ~/.bashrc #添加环境变量,参考链接 export PATH=/root/anaconda3/bin:$PATH #更新 source ~/.bashrc #linux下启动环境 su source activate conda activate 200DK #创建虚拟环境 conda create -n yourName python=3.7 conda create -n 200 python=3.7
安装成功后conda无法调用问题:需要su进入root权限
激活环境,下载加载模型所需包安装python-acllite。下载链接
安装完成后/home/HwHiAiUser/Ascend/目录下会出现thirdpart文件
准备安装依赖,参考链接
sudo apt-get install -y gcc g++ make cmake zlib1g-dev libbz2-dev libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools libblas-dev gfortran libblas3 liblapack-dev openssh-server xterm firefox xdg-utils libdbus-glib-1-dev gdb
下载版本为3.0.4
#下载MindStudio 3.0.4安装包:
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/MindStudio/MindStudio%203.0.4/MindStudio_3.0.4_linux.tar.gz
#解压
tar -zxvf MindStudio_3.0.4_linux.tar.gz
#解压jbr至MindStudio安装根目录
#下载
wget https://cache-redirector.jetbrains.com/intellij-jbr/jbr-11_0_10-linux-aarch64-b1341.35.tar.gz
#解压
tar -zxvf jbr-11_0_10-linux-aarch64-b1341.35.tar.gz
**注意!!!**需要在HwHiAiUser用户下,下载完成后进入jbr
执行命令启动
cd MindStudio/bin
./MindStudio.sh
启动:
#切换Anaconda后的虚拟环境
#下载安装库
pip install ultralytics
运行转换
import sys
from ultralytics import YOLO
#采用源码训练、验证、预测、导出模型,不需要依赖安装ultralytics
# Load a model
# model = YOLO(r"E:\weizhuang925new\camouflageRecognitionV2\static\ptFiles\BaseModel\BaseModel_RGB.pt") # load a pretrained model (recommended for training)
model = YOLO(r"E:\weizhuang925new\camouflageRecognitionV2\static\defaultModelPt\yolov8l-seg.pt") # load a pretrained model (recommended for training)
success = model.export(format="onnx",opset=12) # export the model to ONNX format #转换为onnx模型
print('model.export success')
#在atlas200的设备上打开一个命令窗口,执行下面命令:
/usr/local/Ascend/ascend-toolkit/6.0.RC1/atc/bin/atc --model=/home/rooty/yolo_model/BaseModel_HW.onnx --framework=5 --output=/home/rooty/yolo_model/BaseModel_HW --input_shape="images:1,3,640,640" --soc_version=Ascend310
atc --model="/home/HwHiAiUser/jieyidanao/tinityBuild3_100.onnx" --framework=5 --output=/home/HwHiAiUser/jieyidanao/tinityBuild3_100 --input_shape="input.1:1,3,256,256" --soc_version=Ascend310
转换om需要在atlas设备上进行,先输入atc出现如下start说明可以运行,否则就是cann安装失败,需要重新安装cann
随后执行
from acllite_model import AclLiteModel from acllite_resource import AclLiteResource #初始化 acl_resource = AclLiteResource() acl_resource.init() #加载模型 model = AclLiteModel(MODEL_PATH) #图像处理 def preprocess(img_path): image = Image.open(img_path) img_h = image.size[1] img_w = image.size[0] net_h = MODEL_HEIGHT net_w = MODEL_WIDTH image_ = image.resize((new_w, new_h)) new_image= np.array(image_) new_image = new_image.astype(np.float32) new_image = new_image / 255 print('new_image.shape', new_image.shape) new_image = new_image.transpose(2, 0, 1).copy() return new_image, image #运行模型 result_list = model.execute([data,])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。