赞
踩
使用百度开发的飞桨(paddlepaddle)深度学习框架来构建波士顿房价预测模型。
#加载飞桨、Numpy和相关类库 import paddle from paddle.nn import Linear import paddle.nn.functional as F import numpy as np import os import random def load_data(): # 从文件导入数据 datafile = './work/housing.data' data = np.fromfile(datafile, sep=' ', dtype=np.float32) # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数 feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \ 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] feature_num = len(feature_names) # 将原始数据进行Reshape,变成[N, 14]这样的形状 data = data.reshape([data.shape[0] // feature_num, feature_num]) # 将原数据集拆分成训练集和测试集 # 这里使用80%的数据做训练,20%的数据做测试 # 测试集和训练集必须是没有交集的 ratio = 0.8 offset = int(data.shape[0] * ratio) training_data = data[
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。