当前位置:   article > 正文

python图像增强算法_图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)...

图像 频域增强 python

一、图像增强算法原理

图像增强算法常见于对图像的亮度、对比度、饱和度、色调等进行调节,增加其清晰度,减少噪点等。图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则为高通滤波器,当然增强一副图像是为最后获取图像有用信息服务为主。一般的算法流程可为:图像去燥、增加清晰度(对比度)、灰度化或者获取图像边缘特征或者对图像进行卷积、二值化等,上述四个步骤往往可以通过不同的步骤进行实现,后续将针对此方面内容进行专题实验,列举其应用场景和处理特点。

本文章是一篇综合性文章,算是一篇抛砖引玉的文章,有均衡化、提高对比度、降低对比度的算法。

1.1 基于直方图均衡化的图像增强

图像对比度增强的方法可以分为两种:直接对比度增强方法,间接对比度增强方法。直方图拉伸和直方图均衡化是常见的间接对比度增强方法。直方图拉伸是利用对比度拉伸对直方图进行调整,扩大前景和背景灰度的差别,这种方法可以通过线性和非线性的方法来实现,其中ps中就是利用此方法提高对比度;直方图均衡化则是利用累积函数对灰度值进行调整,实现对比度的增强。

直方图均衡化处理原理:将原始图像的灰度图从比较集中的某个灰度区间均匀分布在整个灰度空间中,实现对图像的非线性拉伸,重新分配图像像素值。

算法应用场景:

1、算法的本质是重新分布图像的像素值,增加了许多局部的对比度,整体的对比度没有进行太大改变,所以应用图像为图像有用数据的对比度相近是,例如:X光图像,可以将曝光过度或曝光不足照片进行更好的显示,或者是背景及前景太亮或太暗的图像非常有用。

2、算法当然也有缺点,具体表现为:变换后的图像灰度级减少,某些细节减少;某些图像有高峰值,则处理后对比度不自然的过分增强。

算法实现特点:

1、均衡化过程:直方图均衡化保证在图像像素映射过程中原来的大小关系保持不变,即较亮的区域依旧较亮,较暗的依旧较暗,只是对比度增加,不能明暗颠倒;保证像素映射函数的值域在0和255之间。累积分布函数是单增长函数,并且值域是0到1。

2、累积分布函数实现过程:

比较概率分布函数和累积分布函数,前者的二维图像是参差不齐的,后者是单调递增的。直方图均衡化过程中,映射方法是

cca89e24bf8c07ff8fa8399cc93ea013.png

其中,n是图像中像素的总和,

fcdf6bad53797cdfec401182128dafcc.png是当前灰度级的像素个数,L是图像中可能的灰度级总数。

来看看通过上述公式怎样实现的拉伸。假设有如下图像:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/78319
推荐阅读
相关标签
  

闽ICP备14008679号