当前位置:   article > 正文

面试官问:生成订单30分钟未支付,则自动取消,该怎么实现?_java 30分钟后某个记录自动删除

java 30分钟后某个记录自动删除

8c9838038be26409edc89e4170ad1679.png

程序员的成长之路

互联网/程序员/技术/资料共享 

关注

阅读本文大概需要 10 分钟。

来自:https://blog.csdn.net/hjm4702192/article/details/80519010

2f2cf4cdb14e401d6b585b78fe00824e.png

在开发中,往往会遇到一些关于延时任务的需求。例如

  • 生成订单30分钟未支付,则自动取消

  • 生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。那么这里就会产生一个问题,这个延时任务和定时任务的区别究竟在哪里呢?一共有如下几点区别

定时任务有明确的触发时间,延时任务没有

定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期

定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务

下面,我们以判断订单是否超时为例,进行方案分析

方案分析

(1)数据库轮询

思路

该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

实现

博主当年早期是用quartz来实现的(实习那会的事),简单介绍一下

maven项目引入一个依赖如下所示

<dependency>
    <groupId>org.quartz-scheduler</groupId>
    <artifactId>quartz</artifactId>
    <version>2.2.2</version>
</dependency>

调用Demo类MyJob如下所示

package com.rjzheng.delay1;
 
import org.quartz.JobBuilder;
 
import org.quartz.JobDetail;
 
import org.quartz.Scheduler;
 
import org.quartz.SchedulerException;
 
import org.quartz.SchedulerFactory;
 
import org.quartz.SimpleScheduleBuilder;
 
import org.quartz.Trigger;
 
import org.quartz.TriggerBuilder;
 
import org.quartz.impl.StdSchedulerFactory;
 
import org.quartz.Job;
 
import org.quartz.JobExecutionContext;
 
import org.quartz.JobExecutionException;
 
public class MyJob implements Job {
 
    public void execute(JobExecutionContext context)
 
            throws JobExecutionException {
 
        System.out.println("要去数据库扫描啦。。。");
 
    }
 
    public static void main(String[] args) throws Exception {
 
        // 创建任务
 
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
 
                .withIdentity("job1", "group1").build();
 
        // 创建触发器 每3秒钟执行一次
 
        Trigger trigger = TriggerBuilder
 
                .newTrigger()
 
                .withIdentity("trigger1", "group3")
 
                .withSchedule(
 
                        SimpleScheduleBuilder.simpleSchedule()
 
                                .withIntervalInSeconds(3).repeatForever())
 
                .build();
 
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
 
        // 将任务及其触发器放入调度器
 
        scheduler.scheduleJob(jobDetail, trigger);
 
        // 调度器开始调度任务
 
        scheduler.start();
 
    }
 
}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。。

优缺点

优点:简单易行,支持集群操作

缺点:(1)对服务器内存消耗大

(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟

(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大

(2)JDK的延迟队列

思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。

DelayedQueue实现工作流程如下图所示

ab2f856272dcf6e43c5a7823d8b4252a.png 图片

其中Poll():获取并移除队列的超时元素,没有则返回空

take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。

实现

定义一个类OrderDelay实现Delayed,代码如下

package com.rjzheng.delay2;
 
import java.util.concurrent.Delayed;
 
import java.util.concurrent.TimeUnit;
 
public class OrderDelay implements Delayed {
 
    private String orderId;
 
    private long timeout;
 
    OrderDelay(String orderId, long timeout) {
 
        this.orderId = orderId;
 
        this.timeout = timeout + System.nanoTime();
 
    }
 
    public int compareTo(Delayed other) {
 
        if (other == this)
 
            return 0;
 
        OrderDelay t = (OrderDelay) other;
 
        long d = (getDelay(TimeUnit.NANOSECONDS) - t
 
                .getDelay(TimeUnit.NANOSECONDS));
 
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
 
    }
 
    // 返回距离你自定义的超时时间还有多少
 
    public long getDelay(TimeUnit unit) {
 
        return unit.convert(timeout - System.nanoTime(),TimeUnit.NANOSECONDS);
 
    }
 
    void print() {
 
        System.out.println(orderId+"编号的订单要删除啦。。。。");
 
    }
 
}

运行的测试Demo为,我们设定延迟时间为3秒

package com.rjzheng.delay2;
 
import java.util.ArrayList;
 
import java.util.List;
 
import java.util.concurrent.DelayQueue;
 
import java.util.concurrent.TimeUnit;
 
public class DelayQueueDemo {
 
     public static void main(String[] args) {  
 
            // TODO Auto-generated method stub  
 
            List<String> list = new ArrayList<String>();  
 
            list.add("00000001");  
 
            list.add("00000002");  
 
            list.add("00000003");  
 
            list.add("00000004");  
 
            list.add("00000005");  
 
            DelayQueue<OrderDelay> queue = newDelayQueue<OrderDelay>();  
 
            long start = System.currentTimeMillis();  
 
            for(int i = 0;i<5;i++){  
 
                //延迟三秒取出
 
                queue.put(new OrderDelay(list.get(i),  
 
                        TimeUnit.NANOSECONDS.convert(3,TimeUnit.SECONDS)));  
 
                    try {  
 
                         queue.take().print();  
 
                         System.out.println("After " +  
 
                                 (System.currentTimeMillis()-start) + " MilliSeconds");  
 
                } catch (InterruptedException e) {  
 
                    // TODO Auto-generated catch block  
 
                    e.printStackTrace();  
 
                }  
 
            }  
 
        }  
 
}

输出如下

00000001编号的订单要删除啦。。。。
 
After 3003 MilliSeconds
 
00000002编号的订单要删除啦。。。。
 
After 6006 MilliSeconds
 
00000003编号的订单要删除啦。。。。
 
After 9006 MilliSeconds
 
00000004编号的订单要删除啦。。。。
 
After 12008 MilliSeconds
 
00000005编号的订单要删除啦。。。。
 
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

优缺点

优点:效率高,任务触发时间延迟低。

缺点:

(1)服务器重启后,数据全部消失,怕宕机 (2)集群扩展相当麻烦 (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常 (4)代码复杂度较高

(3)时间轮算法

思路

先上一张时间轮的图(这图到处都是啦)

5fd24742e2e70121e7093e8442a618f1.png 图片

时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

实现

我们用Netty的HashedWheelTimer来实现

给Pom加上下面的依赖

<dependency>
 
    <groupId>io.netty</groupId>
 
    <artifactId>netty-all</artifactId>
 
    <version>4.1.24.Final</version>
 
</dependency>

测试代码HashedWheelTimerTest如下所示

package com.rjzheng.delay3;
 
import io.netty.util.HashedWheelTimer;
 
import io.netty.util.Timeout;
 
import io.netty.util.Timer;
 
import io.netty.util.TimerTask;
 
import java.util.concurrent.TimeUnit;
 
public class HashedWheelTimerTest {
 
    static class MyTimerTask implements TimerTask{
 
        boolean flag;
 
        public MyTimerTask(boolean flag){
 
            this.flag = flag;
 
        }
 
        public void run(Timeout timeout) throws Exception {
 
            // TODO Auto-generated method stub
 
             System.out.println("要去数据库删除订单了。。。。");
 
             this.flag =false;
 
        }
 
    }
 
    public static void main(String[] argv) {
 
        MyTimerTask timerTask = new MyTimerTask(true);
 
        Timer timer = new HashedWheelTimer();
 
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
 
        int i = 1;
 
        while(timerTask.flag){
 
            try {
 
                Thread.sleep(1000);
 
            } catch (InterruptedException e) {
 
                // TODO Auto-generated catch block
 
                e.printStackTrace();
 
            }
 
            System.out.println(i+"秒过去了");
 
            i++;
 
        }
 
    }
 
}

输出如下

1秒过去了
 
2秒过去了
 
3秒过去了
 
4秒过去了
 
5秒过去了
 
要去数据库删除订单了。。。。
 
6秒过去了

优缺点

优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。

缺点:

(1)服务器重启后,数据全部消失,怕宕机

(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

(4)redis缓存

  • 思路一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值

添加元素:ZADD key score member [[score member] [score member] …]

按顺序查询元素:ZRANGE key start stop [WITHSCORES]

查询元素score:ZSCORE key member

移除元素:ZREM key member [member …]

测试如下

添加单个元素
 
redis> ZADD page_rank 10 google.com
 
(integer) 1
 
添加多个元素
 
redis> ZADD page_rank 9 baidu.com 8 bing.com
 
(integer) 2
 
redis> ZRANGE page_rank 0 -1 WITHSCORES
 
1) "bing.com"
 
2) "8"
 
3) "baidu.com"
 
4) "9"
 
5) "google.com"
 
6) "10"
 
查询元素的score值
 
redis> ZSCORE page_rank bing.com
 
"8"
 
移除单个元素
 
redis> ZREM page_rank google.com
 
(integer) 1
 
redis> ZRANGE page_rank 0 -1 WITHSCORES
 
1) "bing.com"
 
2) "8"
 
3) "baidu.com"
 
4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示

de9ca357ab94c2715eb79c252ed2b5bb.png图片

实现一

package com.rjzheng.delay4;
 
import java.util.Calendar;
 
import java.util.Set;
 
import redis.clients.jedis.Jedis;
 
import redis.clients.jedis.JedisPool;
 
import redis.clients.jedis.Tuple;
 
public class AppTest {
 
    private static final String ADDR = "127.0.0.1";
 
    private static final int PORT = 6379;
 
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);
 
    public static Jedis getJedis() {
 
       return jedisPool.getResource();
 
    }
 
    //生产者,生成5个订单放进去
 
    public void productionDelayMessage(){
 
        for(int i=0;i<5;i++){
 
            //延迟3秒
 
            Calendar cal1 = Calendar.getInstance();
 
            cal1.add(Calendar.SECOND, 3);
 
            int second3later = (int) (cal1.getTimeInMillis() / 1000);
 
            AppTest.getJedis().zadd("OrderId",second3later,"OID0000001"+i);
 
            System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);
 
        }
 
    }
 
    //消费者,取订单
 
    public void consumerDelayMessage(){
 
        Jedis jedis = AppTest.getJedis();
 
        while(true){
 
            Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);
 
            if(items == null || items.isEmpty()){
 
                System.out.println("当前没有等待的任务");
 
                try {
 
                    Thread.sleep(500);
 
                } catch (InterruptedException e) {
 
                    // TODO Auto-generated catch block
 
                    e.printStackTrace();
 
                }
 
                continue;
 
            }
 
            int  score = (int) ((Tuple)items.toArray()[0]).getScore();
 
            Calendar cal = Calendar.getInstance();
 
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);
 
            if(nowSecond >= score){
 
                String orderId = ((Tuple)items.toArray()[0]).getElement();
 
                jedis.zrem("OrderId", orderId);
 
                System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
 
            }
 
        }
 
    }
 
    public static void main(String[] args) {
 
        AppTest appTest =new AppTest();
 
        appTest.productionDelayMessage();
 
        appTest.consumerDelayMessage();
 
    }
 
}

此时对应输出如下

56ddd395301ecfb21ec1a9633cc1ab8b.png 图片

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

package com.rjzheng.delay4;
 
import java.util.concurrent.CountDownLatch;
 
public class ThreadTest {
 
    private static final int threadNum = 10;
 
    private static CountDownLatch cdl = newCountDownLatch(threadNum);
 
    static class DelayMessage implements Runnable{
 
        public void run() {
 
            try {
 
                cdl.await();
 
            } catch (InterruptedException e) {
 
                // TODO Auto-generated catch block
 
                e.printStackTrace();
 
            }
 
            AppTest appTest =new AppTest();
 
            appTest.consumerDelayMessage();
 
        }
 
    }
 
    public static void main(String[] args) {
 
        AppTest appTest =new AppTest();
 
        appTest.productionDelayMessage();
 
        for(int i=0;i<threadNum;i++){
 
            new Thread(new DelayMessage()).start();
 
            cdl.countDown();
 
        }
 
    }
 
}

输出如下所示

507e9f37f83702de1d360e25d28a5fba.png 图片

显然,出现了多个线程消费同一个资源的情况。

解决方案

(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。

(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的

if(nowSecond >= score){
 
    String orderId = ((Tuple)items.toArray()[0]).getElement();
 
    jedis.zrem("OrderId", orderId);
 
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
 
}

修改为

if(nowSecond >= score){
 
    String orderId = ((Tuple)items.toArray()[0]).getElement();
 
    Long num = jedis.zrem("OrderId", orderId);
 
    if( num != null && num>0){
 
        System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
 
    }
 
}

在这种修改后,重新运行ThreadTest类,发现输出正常了

  • 思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

实现二

在redis.conf中,加入一条配置

notify-keyspace-events Ex

运行代码如下

package com.rjzheng.delay5;
 
import redis.clients.jedis.Jedis;
 
import redis.clients.jedis.JedisPool;
 
import redis.clients.jedis.JedisPubSub;
 
public class RedisTest {
 
    private static final String ADDR = "127.0.0.1";
 
    private static final int PORT = 6379;
 
    private static JedisPool jedis = new JedisPool(ADDR, PORT);
 
    private static RedisSub sub = new RedisSub();
 
    public static void init() {
 
        new Thread(new Runnable() {
 
            public void run() {
 
                jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
 
            }
 
        }).start();
 
    }
 
    public static void main(String[] args) throws InterruptedException {
 
        init();
 
        for(int i =0;i<10;i++){
 
            String orderId = "OID000000"+i;
 
            jedis.getResource().setex(orderId, 3, orderId);
 
            System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");
 
        }
 
    }
 
    static class RedisSub extends JedisPubSub {
 
        <ahref='http://www.jobbole.com/members/wx610506454'>@Override</a>
 
        public void onMessage(String channel, String message) {
 
            System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");
 
        }
 
    }
 
}

输出如下

1e316a449c92f4683d8adc9f629d0ce6.png 图片

可以明显看到3秒过后,订单取消了

ps:redis的pub/sub机制存在一个硬伤,官网内容如下

原:Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.

翻: Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。

优缺点

优点:(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。(2)做集群扩展相当方便 (3)时间准确度高

缺点:(1)需要额外进行redis维护

(5)使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列

RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter

lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。

优缺点

优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。

缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高。

<END>

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/125658
推荐阅读
相关标签
  

闽ICP备14008679号