当前位置:   article > 正文

netcore部署到docker 实现excel生成_使用Docker部署Prometheus实现微信邮件报警

prometheus excel

6ed1681e2ed2a3f2338b5051c8793c59.png

Prometheus组成及架构

52cee1163d642233867242f0bf0b31d1.png

Prometheus生态圈中包含了多个组件,其中许多组件是可选的:
  • Prometheus Server:用于收集和存储时间序列数据。

  • Client Library:客户端库,为需要监控的服务生成相应的Metrics并暴露给Prometheus server。当Prometheus server来pull时,直接返回实时状态的Metrics。

  • Push Gateway:主要用于短期的Jobs。由于这类Jobs存在时间较短,可能在Prometheus来pull之前就消失了。为此,这次Jobs可以直接向Prometheus server端推送它们的Metrics。这种方式主要用于服务层面的Metrics,对于机器层面的Metrices,需要使用Node Exporter。

  • Exporters:用于暴露已有的第三方服务的Metrics给Prometheus。

  • Alertmanager:从Prometheus server端接收到alerts后,会进行去除重复数据,分组,并路由到对应的接收方式,发出报警。常见的接收方式有:电子邮件,PagerDuty,OpsGenie,webhook 等。

Prometheus官方文档中的架构图:

50163d2e772426a554c5e0d7ad68d0aa.png

从上图可以看出,Prometheus的主要模块包括:Prometheus server,exporters,Pushgateway,PromQL,Alertmanager以及图形界面。其大概的工作流程是:
  • Prometheus server定期从配置好的Jobs或者exporters中拉Metrics,或者接收来自Pushgateway发过来的Metrics,或者从其他的Prometheus server中拉Metrics。

  • Prometheus server在本地存储收集到的Metrics,并运行已定义好的alert.rules,记录新的时间序列或者向Alertmanager推送警报。

  • Alertmanager根据配置文件,对接收到的警报进行处理,发出告警。

  • 在图形界面中,可视化采集数据。

Prometheus官网:https://prometheus.io/Prometheus安装及配置

52cee1163d642233867242f0bf0b31d1.png

192.168.16.251      Prometheus,grafana,alertmanager,Node-exporter
192.168.16.252      Node-exporter,Jmx-exporter,cAdvisor

创建Prometheus配置文件prometheus.yml(本地宿主机/root/prometheus/conf/下创建):

global:
  scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
alerting:       #指定alertmanager报警组件地址
  alertmanagers:
  - static_configs:
    - targets: [ '192.168.16.251:9093']
rule_files:  #指定报警规则文件
  - "rules.yml"
scrape_configs:
  - job_name: 'nodehost'   
    static_configs:
      - targets: ['192.168.16.251:9100']
        labels:
          appname: 'Node1'
 static_configs:
      - targets: ['192.168.16.252:9100']
        labels:
          appname: 'Node2'
  - job_name: 'tomcat'
    static_configs:
      - targets: ['192.168.16.173:12345']
        labels:
          appname: 'mytest'
  - job_name: 'cadvisor'
    static_configs:
      - targets: [ '192.168.16.251:8080','192.168.16.252:8080','192.168.16.173:8080']
        labels:
          appname: 'cadvisor'
  - job_name: 'prometheus'
    static_configs:
      - targets: [ '192.168.16.251:9090']
        labels:
          appname: 'prometheus'

上面我们使用静态的方式指定了各Metris的地址,但后面应用数量越来越多,手动的添加就不太现实了,Prometheus支持服务发现等多种方式。具体信息移步官网:https://prometheus.io/docs/prometheus/latest/configuration/configuration/创建Prometheus规则文件rules.yml(本地宿主机/root/prometheus/conf/下创建)。下面监控宿主机和容器的内存,CPU,磁盘等状态。

groups:
- name: example #定义规则组
  rules:
  - alert: InstanceDown  #定义报警名称
    expr: up == 0   #Promql语句,触发规则for: 1m            # 一分钟
    labels:       #标签定义报警的级别和主机
      name: instance
      severity: Critical
    annotations:  #注解
      summary: " {{ $labels.appname }}" #报警摘要,取报警信息的appname名称
      description: " 服务停止运行 "   #报警信息
      value: "{{ $value }}%"  # 当前报警状态值
- name: Host
  rules:
  - alert: HostMemory Usage
    expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 >  80for: 1m
    labels:
      name: Memory
      severity: Warning
    annotations:
      summary: " {{ $labels.appname }} "
      description: "宿主机内存使用率超过80%."
      value: "{{ $value }}"
  - alert: HostCPU Usage
    expr: sum(avg without (cpu)(irate(node_cpu_seconds_total{mode!='idle'}[5m]))) by (instance,appname) > 0.65for: 1m
    labels:
      name: CPU
      severity: Warning
    annotations:
      summary: " {{ $labels.appname }} "
      description: "宿主机CPU使用率超过65%."
      value: "{{ $value }}"
  - alert: HostLoad 
    expr: node_load5 > 4for: 1m
    labels:
      name: Load
      severity: Warning
    annotations:
      summary: "{{ $labels.appname }} "
      description: " 主机负载5分钟超过4."
      value: "{{ $value }}"
  - alert: HostFilesystem Usage
    expr: 1-(node_filesystem_free_bytes / node_filesystem_size_bytes) >  0.8for: 1m
    labels:
      name: Disk
      severity: Warning
    annotations:
      summary: " {{ $labels.appname }} "
      description: " 宿主机 [ {{ $labels.mountpoint }} ]分区使用超过80%."
      value: "{{ $value }}%"
  - alert: HostDiskio
    expr: irate(node_disk_writes_completed_total{job=~"Host"}[1m]) > 10for: 1m
    labels:
      name: Diskio
      severity: Warning
    annotations:
      summary: " {{ $labels.appname }} "
      description: " 宿主机 [{{ $labels.device }}]磁盘1分钟平均写入IO负载较高."
      value: "{{ $value }}iops"
  - alert: Network_receive
    expr: irate(node_network_receive_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*|virbr.*|ovs-system"}[5m]) / 1048576  > 3 for: 1m
    labels:
      name: Network_receive
      severity: Warning
    annotations:
      summary: " {{ $labels.appname }} "
      description: " 宿主机 [{{ $labels.device }}] 网卡5分钟平均接收流量超过3Mbps."
      value: "{{ $value }}3Mbps"
  - alert: Network_transmit
    expr: irate(node_network_transmit_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*|virbr.*|ovs-system"}[5m]) / 1048576  > 3for: 1m
    labels:
      name: Network_transmit
      severity: Warning
    annotations:
      summary: " {{ $labels.appname }} "
      description: " 宿主机 [{{ $labels.device }}] 网卡5分钟内平均发送流量超过3Mbps."
      value: "{{ $value }}3Mbps"
- name: Container
  rules:
  - alert: ContainerCPU Usage
    expr: (sum by(name,instance) (rate(container_cpu_usage_seconds_total{image!=""}[5m]))*100) > 60for: 1m
    labels:
      name: CPU
      severity: Warning
    annotations:
      summary: "{{ $labels.name }} "
      description: " 容器CPU使用超过60%."
      value: "{{ $value }}%"
  - alert: ContainerMem Usage#    expr: (container_memory_usage_bytes - container_memory_cache)  / container_spec_memory_limit_bytes   * 100 > 10  
    expr:  container_memory_usage_bytes{name=~".+"}  / 1048576 > 1024for: 1m
    labels:
      name: Memory
      severity: Warning
    annotations:
      summary: "{{ $labels.name }} "
      description: " 容器内存使用超过1GB."
      value: "{{ $value }}G"

部署Prometheus

52cee1163d642233867242f0bf0b31d1.png

docker run -d -p 9090:9090 --name=prometheus \
 -v  /root/prometheus/conf/:/etc/prometheus/  \
prom/prometheus

上面采用的官方镜像,因为启动参数没有指定--web.enable-lifecycle,所以无法使用热加载,时区也是相差八个小时,我们可以通过官方提供的Dockerfile进行修改。下载源码包,制作Prometheus镜像:https://github.com/prometheus/prometheus

FROM   centos:7
LABEL maintainer "The Prometheus Authors , Custom by "
COPY prometheus                             /bin/prometheus
COPY promtool                               /bin/promtool
COPY console_libraries/                     /usr/share/prometheus/console_libraries/
COPY consoles/                              /usr/share/prometheus/consoles/
WORKDIR    /prometheus
RUN ln -snf /usr/share/zoneinfo/Asia/Shanghai  /etc/localtime
ENTRYPOINT [ "/bin/prometheus" ]
CMD        [ "--config.file=/etc/prometheus/prometheus.yml", \"--storage.tsdb.path=/prometheus", \"--web.console.libraries=/usr/share/prometheus/console_libraries", \"--web.enable-lifecycle", \"--web.console.templates=/usr/share/prometheus/consoles" ]

创建容器并运行:

docker build  -t prometheus:latest .
docker run -d -p 9090:9090 --name prometheus   -v  /root/prometheus/conf/:/etc/prometheus/    prometheus:latest

访问Prometheus的9090端口,可以查看监控数据:

40d49c465442de4b60a1e61241f3350b.png

部署Node-exporter

52cee1163d642233867242f0bf0b31d1.png

docker run -d -p 9100:9100   -v "/:/host:ro,rslave" quay.io/prometheus/node-exporter --path.rootfs /host

部署cadvisor-exporter

52cee1163d642233867242f0bf0b31d1.png

docker run --volume=/:/rootfs:ro --volume=/var/run:/var/run:rw --volume=/sys:/sys:ro --volume=/var/lib/docker/:/var/lib/docker:ro --publish=8080:8080 --detach=true --name=cadvisor --net=host google/cadvisor:latest

访问cAdvisor的8080端口,可以看到容器的监控指标:

eae6838bcd44e1ae4f0eba6c4e30f2d2.png

‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

部署jmx-exporter

52cee1163d642233867242f0bf0b31d1.png

下载jar :https://github.com/prometheus/jmx_exporter(jmx_prometheus_javaagent-0.11.0.jar )配置文件:https://github.com/prometheus/jmx_exporter/tree/master/example_configs中间件启动参数添加:

CATALINA_OPTS="-javaagent:/app/tomcat-8.5.23/lib/jmx_prometheus_javaagent-0.11.0.jar=1234:/app/tomcat-8.5.23/conf/config.yaml"

具体查看http://www.unmin.clubGrafana安装及配置

52cee1163d642233867242f0bf0b31d1.png

docker run -d -i -p 3000:3000 -e "GF_SERVER_ROOT_URL=http://grafana.server.name" -e "GF_SECURITY_ADMIN_PASSWORD=secret" --net=host grafana/grafana

Web访问:192.168.16.251:3000user:admin,passwd:secret首先我们添加数据源:

ea654c5141211268e55d76c72a7c2c51.png

import导入8919Node-exporter展示模板:

0c1ed340ea8db75280ac8af6f1682f9b.png

针对容器和JMX的监控模板,我们可以去https://grafana.com/dashboards自行查找。配置报警Alertmanager

52cee1163d642233867242f0bf0b31d1.png

创建alertmanager.yml报警通知文件:

global:
  resolve_timeout: 2m
  smtp_smarthost: smtp.163.com:25
  smtp_from: 12345678@163.com
  smtp_auth_username: 12345678@163.com
  smtp_auth_password: 123456 (授权码)
templates:     ##消息模板
  - '/etc/alertmanager/template/wechat.tmpl'
route:
  group_by: ['alertname_wechat']
  group_wait: 30s
  group_interval: 60s
  receiver: 'wechat'    # 优先使用wechat发送
  repeat_interval: 1h
  routes:  #子路由,使用email发送
  - receiver: email
    match_re: 
      serverity: email
receivers:
- name: 'email'
  email_configs:
  - to: '11111122@qq.com'
    send_resolved: true  # 发送已解决通知
- name: 'wechat'
  wechat_configs:
  - corp_id: 'wwd402ce40b1120f24' #企业ID
    to_party: '2'  # 通知组ID
    agent_id: '1000002'    
    api_secret: '9nmYa4pWq63sQ123kToCbh_oNc' # 生成的secret
    send_resolved: true

编写微信通知模板:

{{ define "wechat.default.message" }}
{{ range $i, $alert :=.Alerts }}
========监控报警==========
告警状态:{{   .Status }}
告警级别:{{ $alert.Labels.severity }}
告警类型:{{ $alert.Labels.alertname }}
告警应用:{{ $alert.Annotations.summary }}
告警主机:{{ $alert.Labels.instance }}
告警详情:{{ $alert.Annotations.description }}
触发阀值:{{ $alert.Annotations.value }}
告警时间:{{ $alert.StartsAt.Format "2006-01-02 15:04:05" }}
========end=============
{{ end }}
{{ end }}

部署Alertmanager:

docker run -d -p 9093:9093 --name alertmanager  -v /root/alertmanager/alertmanager.yml:/etc/alertmanager/alertmanager.yml -v /root/alertmanager/template:/etc/alertmanager/template docker.io/prom/alertmanager:latest

访问Alertmanager的9093端口,可以看到当前报警状态:

db7a96d1c60de19616a456f3a7b0b259.png

34732ad507c160d5750a1bed6ce2d090.png

c16ddb959e72360dcd2028b3595e1c15.png

原文链接:https://www.jianshu.com/p/dfd6ba5206dcKubernetes管理员认证(CKA)培训

52cee1163d642233867242f0bf0b31d1.png

本次CKA培训将于11月20到22日在 北京开课,培训 基于最新考纲,通过 线下授课、考题解读、模拟演练等方式,帮助学员快速掌握Kubernetes的理论知识和专业技能,并针对考试做特别强化训练,让学员能从容面对CKA认证考试,使学员既能掌握Kubernetes相关知识,又能通过CKA认证考试, 学员可多次参加培训,直到通过认证。点击下方图片或者阅读原文链接查看详情。

4bedc3e096d4584a63ca8f9162f36864.png

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号