赞
踩
点击 机器学习算法与Python学习 ,选择加星标
精彩内容不迷路
在本文中,数据和分析工程师 Kunal Dhariwal 为我们介绍了 12 种 Numpy 和 Pandas 函数,这些高效的函数会令数据分析更为容易、便捷 。最后,读者也可以在 GitHub 项目中找到本文所用代码的 Jupyter Notebook。 项目地址:https://github.com/kunaldhariwal/12-Amazing-Pandas-NumPy-Functions Numpy 的 6 种高效函数 首先从 Numpy 开始。Numpy 是用于科学计算的 Python 语言扩展包,通常包含强大的 N 维数组对象、复杂函数、用于整合 C/C++和 Fortran 代码的工具以及有用的线性代数、傅里叶变换和随机数生成能力。 除了上面这些明显的用途,Numpy 还可以用作通用数据的高效多维容器(container),定义任何数据类型。这使得 Numpy 能够实现自身与各种数据库的无缝、快速集成。选自TowardsDataScience,机器之心编译
x = np.array([12, 10, 12, 0, 6, 8, 9, 1, 16, 4, 6, 0])index_val = np.argpartition(x, -4)[-4:]index_valarray([1, 8, 2, 0], dtype=int64)np.sort(x[index_val])array([10, 12, 12, 16])
allclose() allclose() 用于匹配两个数组,并得到布尔值表示的输出。如果在一个公差范围内(within a tolerance)两个数组不等同,则 allclose() 返回 False。该函数对于检查两个数组是否相似非常有用。
array1 = np.array([0.12,0.17,0.24,0.29])array2 = np.array([0.13,0.19,0.26,0.31])# with a tolerance of 0.1, it should return False:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。