赞
踩
最近学习了ISP自动白平衡-动态阈值算法,这里分享给大家。
动态阈值算法主要分为两步:白点检测与白点调整。
白点检测:
白点调整
图像矫正:
#include <iostream> #include <opencv2\imgcodecs.hpp> #include <opencv2\imgproc.hpp> #include <opencv2\core.hpp> #include <opencv2\highgui.hpp> #include <vector> using namespace cv; // Auto White Balance - Gray World Algorithm int AWB_GrayWorld(InputArray src, OutputArray dst) { CV_Assert(src.channels() == 3, "AWB_GrayWorld() input image must be 3 channels!"); Mat mSrc = src.getMat(); if (mSrc.empty()) { std::cout << "AWB_GrayWorld() input image is empty!" << std::endl; return -1; } dst.create(mSrc.size(), mSrc.type()); Mat mDst = dst.getMat(); if (mDst.empty()) { std::cout << "AWB_GrayWorld() create dst image failed!" << std::endl; return -1; } //对输入src图像进行RGB分离 std::vector<Mat> splitedBGR; splitedBGR.reserve(3); split(mSrc, splitedBGR); //分别计算R/G/B图像像素值均值 double meanR = 0, meanG = 0, meanB = 0; meanB = mean(splitedBGR[0])[0]; meanG = mean(splitedBGR[1])[0]; meanR = mean(splitedBGR[2])[0]; //计算R/G/B图像的增益 double gainR = 0, gainG = 0, gainB = 0; gainR = (meanR + meanG + meanB) / (3 * meanR); gainG = (meanR + meanG + meanB) / (3 * meanG); gainB = (meanR + meanG + meanB) / (3 * meanB); //计算增益后R/G/B图像 splitedBGR[0] = splitedBGR[0] * gainB; splitedBGR[1] = splitedBGR[1] * gainG; splitedBGR[2] = splitedBGR[2] * gainR; //将三个单通道图像合成一个三通道图像 merge(splitedBGR, mDst); return 0; } int AWB_PerfectReflect(InputArray src, OutputArray dst) { CV_Assert_2(src.channels() == 3, "AWB_PerfectReflect() src image must has 3 channels!"); Mat mSrc = src.getMat(); if (mSrc.empty()) { std::cout << "AWB_PerfectReflect() src image can't be empty!" << std::endl; return -1; } dst.create(mSrc.size(), mSrc.type()); Mat mDst = dst.getMat(); int sumHist[766] = { 0 };//max(R+G+B) = 255*3 = 765, 0~765->766 int maxVal = 0; for (int i = 0; i < mSrc.rows; i++) { for (int j = 0; j < mSrc.cols; j++) { Vec3b p = mSrc.at<Vec3b>(i, j); int sum = p[0] + p[1] + p[2]; sumHist[sum]++; maxVal = maxVal > p[0] ? maxVal : p[0]; maxVal = maxVal > p[1] ? maxVal : p[1]; maxVal = maxVal > p[2] ? maxVal : p[2]; } } int totalPixels = 0; for (int i = 765; i >= 0; i--) { totalPixels += sumHist[i]; } CV_Assert_2(totalPixels == mSrc.rows*mSrc.cols, "sumHist pixels number isn't equal with image size!"); float ratio = 0.1; int cumPixel = 0; int threshold = 0; for (int i = 765; i >= 0; i--) { cumPixel += sumHist[i]; if (cumPixel >= ratio * mSrc.rows* mSrc.cols) { threshold = i; break; } } int avgB = 0, avgG = 0, avgR = 0; int countPixels = 0; for (int i = 0; i < mSrc.rows; i++) { for (int j = 0; j < mSrc.cols; j++) { Vec3b p = mSrc.at<Vec3b>(i, j); int sum = p[0] + p[1] + p[2]; if (sum > threshold) { countPixels++; avgB += p[0]; avgG += p[1]; avgR += p[2]; } } } avgB /= countPixels; avgG /= countPixels; avgR /= countPixels; for (int i = 0; i < mSrc.rows; i++) { for (int j = 0; j < mSrc.cols; j++) { Vec3b p = mSrc.at<Vec3b>(i, j); int B = p[0] * maxVal / avgB; B = B > 255 ? 255 : B; mDst.at<Vec3b>(i, j)[0] = (uchar)B; int G = p[1] * maxVal / avgG; G = G > 255 ? 255 : G; mDst.at<Vec3b>(i, j)[1] = (uchar)G; int R = p[2] * maxVal / avgR; R = R > 255 ? 255 : R; mDst.at<Vec3b>(i, j)[2] = (uchar)R; } } return 0; } int sign(float value) { if (value > 0) return 1; else if (value == 0) return 0; else return -1; } int AWB_DynamicThreshold(InputArray src, OutputArray dst) { CV_Assert(src.channels() == 3); Mat mSrc = src.getMat(); CV_Assert(mSrc.empty() == false); dst.create(mSrc.size(), mSrc.type()); Mat mDst = dst.getMat(); CV_Assert(mDst.empty() == false); //将RGB图像转换为YCrCb图像 Mat ycrcb; cvtColor(mSrc, ycrcb, COLOR_BGR2YCrCb); CV_Assert(ycrcb.empty() == false); //分离YCrCb图像为单通道图像 std::vector<Mat> splitYCrCb; splitYCrCb.reserve(3); split(ycrcb, splitYCrCb); CV_Assert(splitYCrCb.size() == 3); //将图像分成3x4 12个区域 std::vector<Mat> splitAreas_Cr; splitAreas_Cr.reserve(12); std::vector<Mat> splitAreas_Cb; splitAreas_Cb.reserve(12); for (int i = 0; i < 3; i++) { for (int j = 0; j < 4; j++) { int rowStart = i*(mSrc.rows / 3); int rowEnd = (i + 1)*(mSrc.rows / 3) - 1; int colStart = j*(mSrc.cols / 4); int colEnd = (j + 1)*(mSrc.cols / 4) - 1; Mat areaCr = splitYCrCb[1](Range(rowStart, rowEnd), Range(colStart, colEnd)); splitAreas_Cr.push_back(areaCr); Mat areaCb = splitYCrCb[2](Range(rowStart, rowEnd), Range(colStart, colEnd)); splitAreas_Cb.push_back(areaCb); } } CV_Assert(splitAreas_Cr.size() == 12); CV_Assert(splitAreas_Cb.size() == 12); //统计每个区域Cr,Cb均值 float splitAreas_Cr_Mean[12] = { 0 }; float splitAreas_Cb_Mean[12] = { 0 }; for (int i=0; i<12; i++) { splitAreas_Cb_Mean[i] = mean(splitAreas_Cb[i])[0]; splitAreas_Cr_Mean[i] = mean(splitAreas_Cr[i])[0]; } //统计每个区域Cr,Cb偏差值 float splitAreas_Cr_Std[12] = { 0 }; float splitAreas_Cb_Std[12] = { 0 }; int splitAreas_Pixels[12] = { 0 }; for (int k = 0; k<12; k++) { for (int i = 0; i < splitAreas_Cb[k].rows; i++) { for (int j = 0; j < splitAreas_Cb[k].cols; j++) { /*splitAreas_Cb_Std[k] += abs(splitAreas_Cb[k].at<uchar>(i, j) - splitAreas_Cb_Mean[k]); splitAreas_Cr_Std[k] += abs(splitAreas_Cr[k].at<uchar>(i, j) - splitAreas_Cr_Mean[k]);*/ splitAreas_Cb_Std[k] += pow(splitAreas_Cb[k].at<uchar>(i, j) - splitAreas_Cb_Mean[k], 2); splitAreas_Cr_Std[k] += pow(splitAreas_Cr[k].at<uchar>(i, j) - splitAreas_Cr_Mean[k], 2); splitAreas_Pixels[k]++; } } } for (int k = 0; k < 12; k++) { splitAreas_Cb_Std[k] /= splitAreas_Pixels[k]; splitAreas_Cr_Std[k] /= splitAreas_Pixels[k]; } //根据每个分块的均值和偏差,计算整个图像的均值和偏差,如果分块的Cb,Cr值过小,则忽略该模块 float meanCb = 0, meanCr = 0, stdCb = 0, stdCr = 0; int areaNum = 0; for (int k = 0; k < 12; k++) { if (splitAreas_Cb_Std[k] > 0.01 && splitAreas_Cr_Std[k] > 0.01) { areaNum++; meanCb += splitAreas_Cb_Mean[k]; meanCr += splitAreas_Cr_Mean[k]; stdCb += splitAreas_Cb_Std[k]; stdCr += splitAreas_Cr_Std[k]; } } meanCb /= areaNum; meanCr /= areaNum; stdCb /= areaNum; stdCr /= areaNum; //选择候选白点 std::vector<Vec2i> yHist[256];//记录0-255每一像素值的像素点的坐标 - 符合候选白点条件的像素 int candinateWhitePixelNum = 0; int maxYVal = 0; for (int i = 0; i < splitYCrCb[0].rows; i++) { for (int j = 0; j < splitYCrCb[0].cols; j++) { bool bCr = std::abs(splitYCrCb[1].at<uchar>(i, j) - (1.5 * meanCr + stdCr /** sign(meanCr)*/)) < 1.5 * stdCr; bool bCb = std::abs(splitYCrCb[2].at<uchar>(i, j) - (meanCb + stdCb /** sign(meanCb)*/)) < 1.5 * stdCb; int yValue = splitYCrCb[0].at<uchar>(i, j); maxYVal = maxYVal > yValue ? maxYVal : yValue; if (bCr && bCb) { yHist[yValue].push_back(Vec2i(i, j)); candinateWhitePixelNum++; } } } int ratio = 0.1;//获取候选白点中亮度值从高到低前10%作为参考白点 int cumNum = 0;//记录候选白点亮度值从高到低累积像素数 int yThreshold = 0; for (int i = 255; i >=0; i--) { cumNum += yHist[i].size(); if (cumNum > ratio * candinateWhitePixelNum) { yThreshold = i; break; } } //计算参考白点R,G,B三通道均值 float avgwR = 0, avgwG = 0, avgwB = 0; int whitePixelNum = 0; for (int i = 255; i >= yThreshold; i--) { for (int j = 0; j < yHist[i].size(); j++) { avgwB += mSrc.at<Vec3b>(yHist[i][j][0], yHist[i][j][1])[0]; avgwG += mSrc.at<Vec3b>(yHist[i][j][0], yHist[i][j][1])[1]; avgwR += mSrc.at<Vec3b>(yHist[i][j][0], yHist[i][j][1])[2]; } whitePixelNum += yHist[i].size(); } avgwB /= whitePixelNum; avgwG /= whitePixelNum; avgwR /= whitePixelNum; //计算增益系数,为了让校正后的图像亮度和原图像亮度一致,计算增益时将Y通道最大值作为参考 float gainR = maxYVal / avgwR; float gainG = maxYVal / avgwG; float gainB = maxYVal / avgwB; //矫正图像 for (int i = 0; i < mSrc.rows; i++) { for (int j = 0; j < mSrc.cols; j++) { int B = (int)(mSrc.at<Vec3b>(i,j)[0] * gainB); mDst.at<Vec3b>(i, j)[0] = B > 255 ? 255 : B; int G = (int)(mSrc.at<Vec3b>(i, j)[1] * gainG); mDst.at<Vec3b>(i, j)[1] = G > 255 ? 255 : G; int R = (int)(mSrc.at<Vec3b>(i, j)[2] * gainR); mDst.at<Vec3b>(i, j)[2] = R > 255 ? 255 : R; } } return 0; } int main() { std::string imgPath = "C:\\Temp\\common\\Workspace\\Opencv\\images\\awb_grayworld.jpg"; Mat src = imread(imgPath); Mat dstGW; int status = AWB_GrayWorld(src, dstGW); if (status != 0) goto EXIT; imshow("src", src); imshow("AWB GrayWorld", dstGW); //waitKey(0); { Mat dstPR; status = AWB_PerfectReflect(src, dstPR); if (status != 0) goto EXIT; imshow("AWB PerfectReflect", dstPR); //waitKey(0); } { Mat dstDT; status = AWB_DynamicThreshold(src, dstDT); if (status != 0) goto EXIT; imshow("AWB DynamicThreshold", dstDT); waitKey(0); } EXIT: system("pause"); destroyAllWindows(); return 0; }
原图:
灰度世界算法:
完美反射算法:
YCrCb动态阈值算法:
在实现该算法的过程中,发现如果按照论文中根据差值绝对值的方式计算 D c r , D c b D_{cr}, D_{cb} Dcr,Dcb,找不到候选白点,矫正后的图像就是全黑的;本人使用方差的方式计算 D c r , D c b D_{cr}, D_{cb} Dcr,Dcb,得到比较好的结果,不知道是不是因为转换YCrCb颜色空间时使用OpenCV提供的接口来实现的原因( 0 ≤ C r ( i , j ) ≤ 255 , 0 ≤ C b ( i , j ) ≤ 255 0\leq Cr(i,j)\leq 255, 0\leq Cb(i,j)\leq 255 0≤Cr(i,j)≤255,0≤Cb(i,j)≤255)。
https://www.csie.ntu.edu.tw/~fuh/personal/ANovelAutomaticWhiteBalanceMethodforDigital.pdf
https://www.cnblogs.com/Imageshop/archive/2013/04/20/3032062.html
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。