当前位置:   article > 正文

ISP自动白平衡:动态阈值算法Opencv C++实现

动态阈值算法


前言

最近学习了ISP自动白平衡-动态阈值算法,这里分享给大家。


1. 动态阈值算法步骤

动态阈值算法主要分为两步:白点检测与白点调整。

白点检测:

  1. 将图像转换到YCrCb颜色空间,然后对图像进行分块, 3 × 4 3\times 4 3×4共12块;
  2. 对每块统计Cr, Cb均值 M c r , M c b M_{cr}, M_{cb} Mcr,Mcb;
  3. 根据步骤2计算的均值统计每块Cr, Cb的方差 D c r , D c b D_{cr}, D_{cb} Dcr,Dcb,计算公式:
    D c r = 1 N ∑ ( C r ( i , j ) − M c r ) 2 D_{cr} = \frac{1}{N}\sum(Cr(i,j) - M_{cr})^{2} Dcr=N1(Cr(i,j)Mcr)2
    D c b = 1 N ∑ ( C b ( i , j ) − M c b ) 2 D_{cb} = \frac{1}{N}\sum(Cb(i,j) - M_{cb})^{2} Dcb=N1(Cb(i,j)Mcb)2
    上式 N N N表示当前分块的像素数量, C r ( i , j ) Cr(i,j) Cr(i,j)表示Cr通道像素位置 ( i , j ) (i,j) (i,j)的像素值
  4. 过滤掉 D c r , D c b D_{cr}, D_{cb} Dcr,Dcb数值较小的分块(这里数值为 0.01 0.01 0.01);
  5. 统计所有分块的 M c r , M c b , D c r , D c b M_{cr}, M_{cb}, D_{cr}, D_{cb} Mcr,Mcb,Dcr,Dcb的均值作为图像的均值和方差;
  6. 根据如下条件筛选候选白点并记录该白点的在图像上的索引:
    ∣ C r ( i , j ) − ( 1.5 ∗ M c r + D c r ) ∣ ≤ 1.5 ∗ D c r \lvert Cr(i,j) - (1.5*M_{cr} + D_{cr}) \rvert \leq 1.5*D_{cr} Cr(i,j)(1.5Mcr+Dcr)1.5Dcr
    ∣ C b ( i , j ) − ( M c b + D c b ) ∣ ≤ 1.5 ∗ D c b \lvert Cb(i,j) - (M_{cb} + D_{cb}) \rvert \leq 1.5*D_{cb} Cb(i,j)(Mcb+Dcb)1.5Dcb

白点调整

  1. 根据候选白点亮度值从大到小的顺序选择前10%白点作为参考白点;

图像矫正:

  1. 分别对参考白点计算R,G,B三通道对应像素点的均值 R a v g w , G a v g w , B a v g w R_{avgw}, G_{avgw}, B_{avgw} Ravgw,Gavgw,Bavgw;
  2. 统计YCrCb图像中Y通道最大值 Y M a x YMax YMax,然后与步骤8计算的均值计算R,G,B三通道的增益系数,
    R g a i n = Y M a x R a v g w R_{gain}=\frac{YMax}{R_{avgw}} Rgain=RavgwYMax , G g a i n = Y M a x G a v g w G_{gain}=\frac{YMax}{G_{avgw}} Ggain=GavgwYMax , B g a i n = Y M a x B a v g w B_{gain}=\frac{YMax}{B_{avgw}} Bgain=BavgwYMax
  3. 根据增益对图像进行白平衡矫正
    R ( i , j ) = R ( i , j ) ∗ R g a i n R(i,j) = R(i,j)*R_{gain} R(i,j)=R(i,j)Rgain , G ( i , j ) = G ( i , j ) ∗ G g a i n G(i,j) = G(i,j)*G_{gain} G(i,j)=G(i,j)Ggain , B ( i , j ) = B ( i , j ) ∗ B g a i n B(i,j) = B(i,j)*B_{gain} B(i,j)=B(i,j)Bgain

2. C++ Opencv实现

#include <iostream>
#include <opencv2\imgcodecs.hpp>
#include <opencv2\imgproc.hpp>
#include <opencv2\core.hpp>
#include <opencv2\highgui.hpp>
#include <vector>

using namespace cv;

// Auto White Balance - Gray World Algorithm
int AWB_GrayWorld(InputArray src, OutputArray dst)
{
	CV_Assert(src.channels() == 3, "AWB_GrayWorld() input image must be 3 channels!");

	Mat mSrc = src.getMat();
	if (mSrc.empty())
	{
		std::cout << "AWB_GrayWorld() input image is empty!" << std::endl;
		return -1;
	}
	
	dst.create(mSrc.size(), mSrc.type());
	Mat mDst = dst.getMat();

	if (mDst.empty())
	{
		std::cout << "AWB_GrayWorld() create dst image failed!" << std::endl;
		return -1;
	}

	//对输入src图像进行RGB分离
	std::vector<Mat> splitedBGR;
	splitedBGR.reserve(3);

	split(mSrc, splitedBGR);

	//分别计算R/G/B图像像素值均值
	double meanR = 0, meanG = 0, meanB = 0;
	meanB = mean(splitedBGR[0])[0];
	meanG = mean(splitedBGR[1])[0];
	meanR = mean(splitedBGR[2])[0];

	//计算R/G/B图像的增益
	double gainR = 0, gainG = 0, gainB = 0;
	gainR = (meanR + meanG + meanB) / (3 * meanR);
	gainG = (meanR + meanG + meanB) / (3 * meanG);
	gainB = (meanR + meanG + meanB) / (3 * meanB);

	//计算增益后R/G/B图像
	splitedBGR[0] = splitedBGR[0] * gainB;
	splitedBGR[1] = splitedBGR[1] * gainG;
	splitedBGR[2] = splitedBGR[2] * gainR;

	//将三个单通道图像合成一个三通道图像
	merge(splitedBGR, mDst);

	return 0;
}

int AWB_PerfectReflect(InputArray src, OutputArray dst)
{
	CV_Assert_2(src.channels() == 3, "AWB_PerfectReflect() src image must has 3 channels!");

	Mat mSrc = src.getMat();
	if (mSrc.empty())
	{
		std::cout << "AWB_PerfectReflect() src image can't be empty!" << std::endl;
		return -1;
	}

	dst.create(mSrc.size(), mSrc.type());
	Mat mDst = dst.getMat();

	int sumHist[766] = { 0 };//max(R+G+B) = 255*3 = 765, 0~765->766
	int maxVal = 0;

	for (int i = 0; i < mSrc.rows; i++)
	{
		for (int j = 0; j < mSrc.cols; j++)
		{
			Vec3b p = mSrc.at<Vec3b>(i, j);
			int sum = p[0] + p[1] + p[2];
			sumHist[sum]++;
			maxVal = maxVal > p[0] ? maxVal : p[0];
			maxVal = maxVal > p[1] ? maxVal : p[1];
			maxVal = maxVal > p[2] ? maxVal : p[2];
		}
	}

	int totalPixels = 0;
	for (int i = 765; i >= 0; i--)
	{
		totalPixels += sumHist[i];
	}

	CV_Assert_2(totalPixels == mSrc.rows*mSrc.cols, "sumHist pixels number isn't equal with image size!");

	float ratio = 0.1;
	int cumPixel = 0;
	int threshold = 0;
	for (int i = 765; i >= 0; i--)
	{
		cumPixel += sumHist[i];
		if (cumPixel >= ratio * mSrc.rows* mSrc.cols)
		{
			threshold = i;
			break;
		}
	}

	int avgB = 0, avgG = 0, avgR = 0;
	int countPixels = 0;
	for (int i = 0; i < mSrc.rows; i++)
	{
		for (int j = 0; j < mSrc.cols; j++)
		{
			Vec3b p = mSrc.at<Vec3b>(i, j);
			int sum = p[0] + p[1] + p[2];
			if (sum > threshold)
			{
				countPixels++;
				avgB += p[0];
				avgG += p[1];
				avgR += p[2];
			}
		}
	}

	avgB /= countPixels;
	avgG /= countPixels;
	avgR /= countPixels;

	for (int i = 0; i < mSrc.rows; i++)
	{
		for (int j = 0; j < mSrc.cols; j++)
		{
			Vec3b p = mSrc.at<Vec3b>(i, j);
			int B = p[0] * maxVal / avgB;
			B = B > 255 ? 255 : B;
			mDst.at<Vec3b>(i, j)[0] = (uchar)B;

			int G = p[1] * maxVal / avgG;
			G = G > 255 ? 255 : G;
			mDst.at<Vec3b>(i, j)[1] = (uchar)G;

			int R = p[2] * maxVal / avgR;
			R = R > 255 ? 255 : R;
			mDst.at<Vec3b>(i, j)[2] = (uchar)R;
		}
	}

	return 0;
}

int sign(float value)
{
	if (value > 0)
		return 1;
	else if (value == 0)
		return 0;
	else
		return -1;
}

int AWB_DynamicThreshold(InputArray src, OutputArray dst)
{
	CV_Assert(src.channels() == 3);

	Mat mSrc = src.getMat();
	CV_Assert(mSrc.empty() == false);

	dst.create(mSrc.size(), mSrc.type());
	
	Mat mDst = dst.getMat();
	CV_Assert(mDst.empty() == false);

	//将RGB图像转换为YCrCb图像
	Mat ycrcb;
	cvtColor(mSrc, ycrcb, COLOR_BGR2YCrCb);
	CV_Assert(ycrcb.empty() == false);

	//分离YCrCb图像为单通道图像
	std::vector<Mat> splitYCrCb;
	splitYCrCb.reserve(3);
	split(ycrcb, splitYCrCb);

	CV_Assert(splitYCrCb.size() == 3);

	//将图像分成3x4 12个区域
	std::vector<Mat> splitAreas_Cr;
	splitAreas_Cr.reserve(12);
	std::vector<Mat> splitAreas_Cb;
	splitAreas_Cb.reserve(12);
	for (int i = 0; i < 3; i++)
	{
		for (int j = 0; j < 4; j++)
		{
			int rowStart = i*(mSrc.rows / 3);
			int rowEnd = (i + 1)*(mSrc.rows / 3) - 1;
			int colStart = j*(mSrc.cols / 4);
			int colEnd = (j + 1)*(mSrc.cols / 4) - 1;
			Mat areaCr = splitYCrCb[1](Range(rowStart, rowEnd), Range(colStart, colEnd));
			splitAreas_Cr.push_back(areaCr);

			Mat areaCb = splitYCrCb[2](Range(rowStart, rowEnd), Range(colStart, colEnd));
			splitAreas_Cb.push_back(areaCb);
		}
	}

	CV_Assert(splitAreas_Cr.size() == 12);
	CV_Assert(splitAreas_Cb.size() == 12);

	//统计每个区域Cr,Cb均值
	float splitAreas_Cr_Mean[12] = { 0 };
	float splitAreas_Cb_Mean[12] = { 0 };
	for (int i=0; i<12; i++)
	{
		splitAreas_Cb_Mean[i] = mean(splitAreas_Cb[i])[0];
		splitAreas_Cr_Mean[i] = mean(splitAreas_Cr[i])[0];
	}

	//统计每个区域Cr,Cb偏差值
	float splitAreas_Cr_Std[12] = { 0 };
	float splitAreas_Cb_Std[12] = { 0 };
	int	  splitAreas_Pixels[12] = { 0 };
	for (int k = 0; k<12; k++)
	{
		for (int i = 0; i < splitAreas_Cb[k].rows; i++)
		{
			for (int j = 0; j < splitAreas_Cb[k].cols; j++)
			{
				/*splitAreas_Cb_Std[k] += abs(splitAreas_Cb[k].at<uchar>(i, j) - splitAreas_Cb_Mean[k]);
				splitAreas_Cr_Std[k] += abs(splitAreas_Cr[k].at<uchar>(i, j) - splitAreas_Cr_Mean[k]);*/
				splitAreas_Cb_Std[k] += pow(splitAreas_Cb[k].at<uchar>(i, j) - splitAreas_Cb_Mean[k], 2);
				splitAreas_Cr_Std[k] += pow(splitAreas_Cr[k].at<uchar>(i, j) - splitAreas_Cr_Mean[k], 2);
				splitAreas_Pixels[k]++;
			}
		}
	}

	for (int k = 0; k < 12; k++)
	{
		splitAreas_Cb_Std[k] /= splitAreas_Pixels[k];
		splitAreas_Cr_Std[k] /= splitAreas_Pixels[k];
	}

	//根据每个分块的均值和偏差,计算整个图像的均值和偏差,如果分块的Cb,Cr值过小,则忽略该模块
	float meanCb = 0, meanCr = 0, stdCb = 0, stdCr = 0;
	int areaNum = 0;
	for (int k = 0; k < 12; k++)
	{
		if (splitAreas_Cb_Std[k] > 0.01 && splitAreas_Cr_Std[k] > 0.01)
		{
			areaNum++;
			meanCb += splitAreas_Cb_Mean[k];
			meanCr += splitAreas_Cr_Mean[k];
			stdCb += splitAreas_Cb_Std[k];
			stdCr += splitAreas_Cr_Std[k];
		}
	}

	meanCb /= areaNum;
	meanCr /= areaNum;
	stdCb /= areaNum;
	stdCr /= areaNum;

	//选择候选白点
	std::vector<Vec2i> yHist[256];//记录0-255每一像素值的像素点的坐标 - 符合候选白点条件的像素
	int candinateWhitePixelNum = 0;
	int maxYVal = 0;
	for (int i = 0; i < splitYCrCb[0].rows; i++)
	{
		for (int j = 0; j < splitYCrCb[0].cols; j++)
		{
			bool bCr = std::abs(splitYCrCb[1].at<uchar>(i, j) - (1.5 * meanCr + stdCr /** sign(meanCr)*/)) < 1.5 * stdCr;
			bool bCb = std::abs(splitYCrCb[2].at<uchar>(i, j) - (meanCb + stdCb /** sign(meanCb)*/)) < 1.5 * stdCb;

			int yValue = splitYCrCb[0].at<uchar>(i, j);

			maxYVal = maxYVal > yValue ? maxYVal : yValue;

			if (bCr && bCb)
			{
				
				yHist[yValue].push_back(Vec2i(i, j));
				candinateWhitePixelNum++;
			}
		}
	}

	int ratio = 0.1;//获取候选白点中亮度值从高到低前10%作为参考白点
	int cumNum = 0;//记录候选白点亮度值从高到低累积像素数
	int yThreshold = 0;
	for (int i = 255; i >=0; i--)
	{
		cumNum += yHist[i].size();
		if (cumNum > ratio * candinateWhitePixelNum)
		{
			yThreshold = i;
			break;
		}
	}

	//计算参考白点R,G,B三通道均值
	float avgwR = 0, avgwG = 0, avgwB = 0;

	int whitePixelNum = 0;
	for (int i = 255; i >= yThreshold; i--)
	{
		for (int j = 0; j < yHist[i].size(); j++)
		{
			avgwB += mSrc.at<Vec3b>(yHist[i][j][0], yHist[i][j][1])[0];
			avgwG += mSrc.at<Vec3b>(yHist[i][j][0], yHist[i][j][1])[1];
			avgwR += mSrc.at<Vec3b>(yHist[i][j][0], yHist[i][j][1])[2];
		}
		whitePixelNum += yHist[i].size();
	}

	avgwB /= whitePixelNum;
	avgwG /= whitePixelNum;
	avgwR /= whitePixelNum;

	//计算增益系数,为了让校正后的图像亮度和原图像亮度一致,计算增益时将Y通道最大值作为参考
	float gainR = maxYVal / avgwR;
	float gainG = maxYVal / avgwG;
	float gainB = maxYVal / avgwB;

	//矫正图像
	
	for (int i = 0; i < mSrc.rows; i++)
	{
		for (int j = 0; j < mSrc.cols; j++)
		{
			int B = (int)(mSrc.at<Vec3b>(i,j)[0] * gainB);
			mDst.at<Vec3b>(i, j)[0] = B > 255 ? 255 : B;

			int G = (int)(mSrc.at<Vec3b>(i, j)[1] * gainG);
			mDst.at<Vec3b>(i, j)[1] = G > 255 ? 255 : G;

			int R = (int)(mSrc.at<Vec3b>(i, j)[2] * gainR);
			mDst.at<Vec3b>(i, j)[2] = R > 255 ? 255 : R;

		}
	}

	return 0;
}

int main()
{
	std::string imgPath = "C:\\Temp\\common\\Workspace\\Opencv\\images\\awb_grayworld.jpg";
	Mat src = imread(imgPath);
	Mat dstGW;
	int status = AWB_GrayWorld(src, dstGW);
	if (status != 0)
		goto EXIT;

	imshow("src", src);
	imshow("AWB GrayWorld", dstGW);
	//waitKey(0);

	{
		Mat dstPR;
		status = AWB_PerfectReflect(src, dstPR);
		if (status != 0)
			goto EXIT;

		imshow("AWB PerfectReflect", dstPR);
		//waitKey(0);
	}

	{
		Mat dstDT;
		status = AWB_DynamicThreshold(src, dstDT);
		if (status != 0)
			goto EXIT;

		imshow("AWB DynamicThreshold", dstDT);
		waitKey(0);
	}

EXIT:
	system("pause");
	destroyAllWindows();

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387

3. 运行结果

原图:
在这里插入图片描述

灰度世界算法:
在这里插入图片描述

完美反射算法:
在这里插入图片描述

YCrCb动态阈值算法:
在这里插入图片描述

总结

在实现该算法的过程中,发现如果按照论文中根据差值绝对值的方式计算 D c r , D c b D_{cr}, D_{cb} Dcr,Dcb,找不到候选白点,矫正后的图像就是全黑的;本人使用方差的方式计算 D c r , D c b D_{cr}, D_{cb} Dcr,Dcb,得到比较好的结果,不知道是不是因为转换YCrCb颜色空间时使用OpenCV提供的接口来实现的原因( 0 ≤ C r ( i , j ) ≤ 255 , 0 ≤ C b ( i , j ) ≤ 255 0\leq Cr(i,j)\leq 255, 0\leq Cb(i,j)\leq 255 0Cr(i,j)255,0Cb(i,j)255)。

参考

https://www.csie.ntu.edu.tw/~fuh/personal/ANovelAutomaticWhiteBalanceMethodforDigital.pdf
https://www.cnblogs.com/Imageshop/archive/2013/04/20/3032062.html

本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号