当前位置:   article > 正文

飞桨(PaddlePaddle)模型保存与加载教程_百度飞桨 b保存

百度飞桨 b保存

飞桨(PaddlePaddle)模型保存与加载教程

深度学习中,模型训练完成后,通常需要将模型参数保存到磁盘,以便后续进行模型评估、推理或继续训练。飞桨提供了多种模型保存与加载的方法,本教程将介绍这些方法。

1. 概述

在飞桨中,模型保存与加载主要涉及以下几个方面:

  • 训练调优场景:在训练过程中定期保存模型,或在训练结束后保存模型以便于评估或微调。
  • 推理部署场景:将训练好的模型部署到不同的硬件环境中,如服务器、移动端或边缘设备。

飞桨推荐使用的模型保存与加载API包括:

  • paddle.savepaddle.load:用于保存和加载模型参数。
  • paddle.jit.savepaddle.jit.load:用于保存和加载动态图模型。
  • paddle.Model.savepaddle.Model.load:高层API,用于保存和加载模型。
2. 训练调优场景

在动态图模式下,模型结构和参数可以通过state_dict来保存和加载。

2.1 保存动态图模型
import paddle
import paddle.nn as nn
import paddle.optimizer as opt

# 假设已经定义了模型和优化器
model = nn.Linear(10, 1)
optimizer = opt.SGD(parameters=model.parameters(), learning_rate=0.01)

# 保存模型参数和优化器参数
paddle.save(model.state_dict(), 'model.pdparams')
paddle.save(optimizer.state_dict(), 'optimizer.pdopt')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
2.2 加载动态图模型
# 加载模型参数和优化器参数
model_state_dict = paddle.load('model.pdparams')
optimizer_state_dict = paddle.load('optimizer.pdopt')

# 设置模型和优化器的状态
model.set_state_dict(model_state_dict)
optimizer.set_state_dict(optimizer_state_dict)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
3. 推理部署场景

在推理部署时,通常需要将动态图模型转换为静态图模型以提高性能。

3.1 使用基础API
# 保存静态图模型
paddle.jit.save(model, 'inference_model', training=False)

# 加载静态图模型
loaded_model = paddle.jit.load('inference_model')
  • 1
  • 2
  • 3
  • 4
  • 5
4. 其他场景
4.1 旧版本格式兼容载入

如果之前使用的是飞桨1.x版本,可以使用兼容的API进行模型加载。

4.2 静态图模型的保存与加载

在静态图模式下,模型结构和参数可以通过paddle.static.savepaddle.static.load进行保存和加载。

5. 总结

飞桨支持动态图和静态图模型的保存与加载。对于训练调优场景,可以使用paddle.savepaddle.load。对于推理部署场景,推荐将动态图模型转换为静态图模型后再进行保存和加载。飞桨的高层API也提供了相应的方法来简化这些操作。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/510305
推荐阅读
相关标签
  

闽ICP备14008679号