当前位置:   article > 正文

LLama学习记录

LLama学习记录

学习前:

五大问题:

  1. 为什么SwiGLU激活函数能够提升模型性能?
  2. RoPE位置编码是什么?怎么用的?还有哪些位置编码方式?
  3. GQA(Grouped-Query Attention, GQA)分组查询注意力机制是什么?
  4. Pre-normalization前置了层归一化,使用RMSNorm 作为层归一化方法,这是什么意思?还有哪些归一化方法?LayerNorm?
  5. 将self-attention改进为使用KV-Cache的Grouped Query,怎么实现的?原理是什么?

Embedding

Embedding的过程word -> token_id -> embedding_vector,其中第一步转化使用tokenizer的词表进行,第二步转化使用 learnable 的 Embedding layer

这里的第二步,不是很明白怎么实现的,需要再细化验证

RMS Norm

对比Batch Norm 和 Layer Norm:都是减去均值Mean,除以方差Var(还加有一个极小值),最终将归一化为正态分布N(0,1)。只不过两者是在不同的维度(batch还是feature)求均值和方差,(其中,减均值:re-centering 将均值mean变换为0,除方差:re-scaling将方差varance变换为1)。

参考知乎的norm几则

RoPE(Rotary Positional Encodding)

绝对Positional Encodding的使用过程:word -> token_id -> embedding_vector + position_encodding -> Encoder_Input,其中第一步转化使用tokenizer的词表进行,第二步转化使用 learnable 的 Embedding layer。将得到的embedding_vector 和 position_encodding 进行element-wise的相加,然后才做为input送入LLM的encoder。

理解LLM位置编码:RoPE

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/648571
推荐阅读
相关标签
  

闽ICP备14008679号