赞
踩
导读:本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。
我们热切地期盼更多的读者投身到该领域,与我们一起探索图像数据的无尽潜力。
作者:魏溪含 涂铭 张修鹏
如需转载请联系大数据(ID:hzdashuju)
▲图1-1 人工智能相关领域关系图
00 什么是机器视觉?
机器视觉是人工智能的一个重要分支,其核心是使用“机器眼”来代替人眼。机器视觉系统通过图像/视频采集装置,将采集到的图像/视频输入到视觉算法中进行计算,最终得到人类需要的信息。这里提到的视觉算法有很多种,例如,传统的图像处理方法以及近些年的深度学习方法等。
图1-2a展示了一个由彩色图像组成的、分类的数据集Cifar10,其中有飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车10个类别,且每个类别中都有1000张32×32的彩色图片。图1-2b展示的是不同算法在Cifar10数据集上的分类效果。
▲图1-2a Cifar10数据集展示
▲图1-2b 传统图像处理方法与深度学习方法在Cifar10数据集上的效果对比
从中我们可以看出,在深度学习出现以前,传统的图像处理和机器学习方法并不能很好地完成这样一个简单的分类任务,而深度学习的出现使得机器有了达到人类水平的可能。事实上,AlphaGo的出现已经证明了在一些领域,机器有了超越人类的能力。
由于深度学习技术的发展、计算能力的提升和视觉数据的增长,视觉智能计算技术在不少应用当中都取得了令人瞩目的成绩。
图像视频的识别、检测、分割、生成、超分辨、captioning、搜索等经典和新生的问题纷纷取得了不小的突破。这些技术正广泛应用于城市治理、金融、工业、互联网等领域。
以下将以9个场景为例,对一些常见的应用场景进行介绍,让读者直观地理解机器视觉都能解决哪些问题。
01 人脸识别
人脸识别(Face Recognition)是基于人的面部特征信息进行身份识别的一种生物识别技术。它通过采集含有人脸的图片或视频流,并在图片中自动检测和跟踪人脸,进而对检测到的人脸进行面部识别。人脸识别可提供图像或视频中的人脸检测定位、人脸属性识别、人脸比对、活体检测等功能。
人脸识别是机器视觉最成熟、最热门的领域,近几年,人脸识别已经逐步超过指纹识别成为生物识别的主导技术。人脸识别分为4个处理过程——人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别,其主要应用及说明如下:
人脸支付:将人脸与用户的支付渠道绑定,支付阶段即可刷脸付款,无须出示银行卡、手机等,提高支付效率(如图1-3)
人脸开卡:客户在银行等部门开卡时,可通过身份证和人脸识别进行身份校验,以防止借用身份证进行开卡
人脸登录:用户注册阶段录入人脸图片,在安全性要求较高的场景中启动人脸登录验证,以提高安全性
VIP人脸识别:通过人脸识别自动确定客户的身份,提供差异化服务
人脸签到:活动开始前录入人脸图片,活动当天即可通过刷脸进行签到,提高签到效率
人脸考勤:利用高精度的人脸识别、比对能力,搭建考勤系统,提升考勤效率,提高防作弊能力(如图1-3所示)
人脸闸机:在机场、铁路、海关等场合利用人脸识别确定乘客身份
会员识别:会员到店无须出示会员凭证,只要刷脸即可完成会员身份验证,实现无卡化身份确认和人流统计
安防监控:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。