赞
踩
监督学习和无监督学习是机器学习中两个最基本的范畴。它们的主要区别在于是否需要标注数据作为训练样本。
什么是监督学习和无监督学习?
监督学习是指利用标记的数据(通常称为训练数据)作为输入,训练一个模型来学习输入和输出之间的关系。模型学习后可以用于预测新的、未见过的数据的输出。这种学习方式的目标是找到一个函数,使其将输入数据映射到输出数据。监督学习的例子包括分类、回归、序列标注等任务。
无监督学习是指从没有标记的数据中学习模型,该模型试图发现数据内在的结构和模式,而不是预测输出变量。无监督学习的目标是发现数据之间的相似性或关联性,并将其归为一类或者提取数据的特征。无监督学习的例子包括聚类、降维、异常检测等任务。
监督学习和无监督学习有不同的应用场景和作用:
在实际应用中,监督学习和无监督学习通常都需要相互配合,例如使用无监督学习方法进行数据预处理和特征提取,然后使用监督学习方法进行分类或回归任务。
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。
下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号 321 领取(一定要发暗号 321)
目录
一、人工智能免费视频课程和项目
二、人工智能必读书籍
三、人工智能论文合集
四、机器学习+计算机视觉基础算法教程
五、深度学习机器学习速查表(共26张)
学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。