当前位置:   article > 正文

深度学习入门2:自制框架DeZero_深度学习入门2:自制框架 pdf

深度学习入门2:自制框架 pdf

待更新

第一阶段 自动微分

步骤1 作为箱子的变量

步骤3 函数的连续调用

步骤4 数值微分

步骤6 手动进行反向传播

import numpy as np


class Varialbe:
    def __init__(self, data):
        self.data = data
        self.grad = None

class Fuction:
    def __call__(self, input):
        x = input.data
        y = self.forward(x)
        output = Varialbe(y)
        self.input = input
        return output
    
    def forward(self, x):
        raise NotImplementedError()
    
    def backward(self, gy):
        raise NotImplementedError()

class Square(Fuction):
    def forward(self, x):
        y = x ** 2
        return y
    def backward(self, gy):
        x = self.input.data
        gx = 2 * x * gy
        return gx

class Exp(Fuction):
    def forward(self, x):
        y = np.exp(x)
        return y
    
    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return gx

def numerical_deff(f, x, eps=1e-4):
    x0 = Varialbe(x.data - eps)
    x1 = Varialbe(x.data + eps)
    y0 = f(x0)
    y1 = f(x1)
    return (y1.data - y0.data) / (2 * eps)


A = Square()
B = Exp()
C = Square()

x = Varialbe(np.array(0.5))
a = A(x)
b = B(a)
c = C(b)

y.grad = np.array(1.0)
b.grad = C.backward(y.grad)
a.grad = B.backward(b.grad)
x.garad = A.backward(a.grad)
print(x.grad)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

步骤7 反向传播的自动化

import numpy as np


class Varialbe:
    def __init__(self, data):
        self.data = data
        self.grad = None
        self.creator = None
    
    def set_creator(self, func):
        self.creator = func
        
class Fuction:
    def __call__(self, input):
        x = input.data
        y = self.forward(x)
        output = Varialbe(y)
        output.set_creator(self)
        self.input = input
        self.output = output
        return output
    
    def forward(self, x):
        raise NotImplementedError()
    
    def backward(self, gy):
        raise NotImplementedError()

class Square(Fuction):
    def forward(self, x):
        y = x ** 2
        return y
    def backward(self, gy):
        x = self.input.data
        gx = 2 * x * gy
        return gx

class Exp(Fuction):
    def forward(self, x):
        y = np.exp(x)
        return y
    
    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return gx

def numerical_deff(f, x, eps=1e-4):
    x0 = Varialbe(x.data - eps)
    x1 = Varialbe(x.data + eps)
    y0 = f(x0)
    y1 = f(x1)
    return (y1.data - y0.data) / (2 * eps)


A = Square()
B = Exp()
C = Square()

x = Varialbe(np.array(0.5))
a = A(x)
b = B(a)
y = C(b)

# assert y.creator == C
# assert y.creator.input == b 
# assert y.creator.input.creator == B
# assert y.creator.input.creator.input == a
# assert y.creator.input.creator.input.creator == A
# assert y.creator.input.creator.input.creator.input == x

y.grad =  np.array(1.0)
C = y.creator
b = C.input
b.grad = C.backward(y.grad)

B = b.creator
a = B.input
a.grad = B.backward(b.grad)

A = a.creator
x = A.input
x.grad = A.backward(a.grad)
print(x.grad)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
import numpy as np

# 调用一个Function时,Function会记录左右的input和output,同时output会记录生成它的Func
class Varialbe:
    def __init__(self, data):
        self.data = data
        self.grad = None
        self.creator = None
    
    def set_creator(self, func):
        self.creator = func
    
    def backward(self):
        f = self.creator
        if f is not None:
            x = f.input
            x.grad = f.backward(self.grad)
            x.backward() 
    
        
class Fuction:
    def __call__(self, input):
        x = input.data
        y = self.forward(x)
        output = Varialbe(y)
        output.set_creator(self)
        self.input = input
        self.output = output
        return output
    
    def forward(self, x):
        raise NotImplementedError()
    
    def backward(self, gy):
        raise NotImplementedError()

class Square(Fuction):
    def forward(self, x):
        y = x ** 2
        return y
    def backward(self, gy):
        x = self.input.data
        gx = 2 * x * gy
        return gx

class Exp(Fuction):
    def forward(self, x):
        y = np.exp(x)
        return y
    
    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return gx

def numerical_deff(f, x, eps=1e-4):
    x0 = Varialbe(x.data - eps)
    x1 = Varialbe(x.data + eps)
    y0 = f(x0)
    y1 = f(x1)
    return (y1.data - y0.data) / (2 * eps)


A = Square()
B = Exp()
C = Square()

x = Varialbe(np.array(0.5))
a = A(x)
b = B(a)
y = C(b)

# assert y.creator == C
# assert y.creator.input == b 
# assert y.creator.input.creator == B
# assert y.creator.input.creator.input == a
# assert y.creator.input.creator.input.creator == A
# assert y.creator.input.creator.input.creator.input == x

y.grad =  np.array(1.0)
y.backward()
print(x.grad)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
import numpy as np

# 调用一个Function时,Function会记录左右的input和output,同时output会记录生成它的Func
class Varialbe:
    def __init__(self, data):
        self.data = data
        self.grad = None
        self.creator = None
    
    def set_creator(self, func):
        self.creator = func
    
    # def backward(self):
    #     f = self.creator
    #     if f is not None:
    #         x = f.input
    #         x.grad = f.backward(self.grad)
    #         x.backward() 
    
    def backward(self):
        funcs = [self.creator]
        while funcs:
            f = funcs.pop()
            x, y = f.input, f.output
            x.grad = f.backward(y.grad)
            
            if x.creator  is not None:
                funcs.append(x.creator)
    
        
class Fuction:
    def __call__(self, input):
        x = input.data
        y = self.forward(x)
        output = Varialbe(y)
        output.set_creator(self)
        self.input = input
        self.output = output
        return output
    
    def forward(self, x):
        raise NotImplementedError()
    
    def backward(self, gy):
        raise NotImplementedError()

class Square(Fuction):
    def forward(self, x):
        y = x ** 2
        return y
    def backward(self, gy):
        x = self.input.data
        gx = 2 * x * gy
        return gx

class Exp(Fuction):
    def forward(self, x):
        y = np.exp(x)
        return y
    
    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return gx

def numerical_deff(f, x, eps=1e-4):
    x0 = Varialbe(x.data - eps)
    x1 = Varialbe(x.data + eps)
    y0 = f(x0)
    y1 = f(x1)
    return (y1.data - y0.data) / (2 * eps)


A = Square()
B = Exp()
C = Square()

x = Varialbe(np.array(0.5))
a = A(x)
b = B(a)
y = C(b)

# assert y.creator == C
# assert y.creator.input == b 
# assert y.creator.input.creator == B
# assert y.creator.input.creator.input == a
# assert y.creator.input.creator.input.creator == A
# assert y.creator.input.creator.input.creator.input == x

# y.grad =  np.array(1.0)
# C1 = y.creator
# b = C1.input
# b.grad = C1.backward(y.grad)

# B1 = b.creator
# a = B1.input
# a.grad = B1.backward(b.grad)

# A1 = a.creator
# x = A1.input
# x.grad = A1.backward(a.grad)
# print(x.grad)

y.grad = np.array(1.0)
y.backward()
print(x.grad)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
import numpy as np

# 调用一个Function时,Function会记录左右的input和output,同时output会记录生成它的Func
class Varialbe:
    def __init__(self, data):
        self.data = data
        self.grad = None
        self.creator = None
    
    def set_creator(self, func):
        self.creator = func
    
    # def backward(self):
    #     f = self.creator
    #     if f is not None:
    #         x = f.input
    #         x.grad = f.backward(self.grad)
    #         x.backward() 
    
    def backward(self):
        if self.grad is None:
            self.grad = np.ones_like(self.data)
            
        funcs = [self.creator]
        while funcs:
            f = funcs.pop()
            x, y = f.input, f.output
            x.grad = f.backward(y.grad)
            
            if x.creator  is not None:
                funcs.append(x.creator)
    
        
class Fuction:
    def __call__(self, input):
        x = input.data
        y = self.forward(x)
        output = Varialbe(y)
        output.set_creator(self)
        self.input = input
        self.output = output
        return output
    
    def forward(self, x):
        raise NotImplementedError()
    
    def backward(self, gy):
        raise NotImplementedError()

class Square(Fuction):
    def forward(self, x):
        y = x ** 2
        return y
    def backward(self, gy):
        x = self.input.data
        gx = 2 * x * gy
        return gx

class Exp(Fuction):
    def forward(self, x):
        y = np.exp(x)
        return y
    
    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return gx

def numerical_deff(f, x, eps=1e-4):
    x0 = Varialbe(x.data - eps)
    x1 = Varialbe(x.data + eps)
    y0 = f(x0)
    y1 = f(x1)
    return (y1.data - y0.data) / (2 * eps)


def square(x):
    f = Square()
    return f(x)

def exp(x):
    f =  Exp()
    return f(x)



x = Varialbe(np.array(0.5))
y = square(exp(square(x)))
y.backward()
print(x.grad)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
import numpy as np
import unittest

class SquareTest(unittest.TestCase):
    def test_forward(self):
        x = Varialbe(np.array(2.0))
        y = square(x)
        expected = np.array(4.0)
        self.assertEqual(y.data, expected)
    
    def test_backward(self):
        x = Varialbe(np.array(3.))
        y = square(x)
        y.backward()
        expected = np.array(6.0)
        self.assertEqual(x.grad, expected)
    
    def test_gradient_check(self):
        x = Varialbe(np.random.rand(1))
        y = square(x)
        y.backward()
        num_grad = numerical_deff(square, x)
        flg = np.allclose(x.grad, num_grad)
        self.assertTrue(flg)
        
        
# 调用一个Function时,Function会记录左右的input和output,同时output会记录生成它的Func
class Varialbe:
    def __init__(self, data):
        if data is not None:
            if not isinstance(data, np.ndarray):
                raise TypeError('{} is not supported'.format(type(data)))
        self.data = data
        self.grad = None
        self.creator = None
    
    def set_creator(self, func):
        self.creator = func
    
    # def backward(self):
    #     f = self.creator
    #     if f is not None:
    #         x = f.input
    #         x.grad = f.backward(self.grad)
    #         x.backward() 
    
    def backward(self):
        if self.grad is None:
            self.grad = np.ones_like(self.data)
            
        funcs = [self.creator]
        while funcs:
            f = funcs.pop()
            x, y = f.input, f.output
            x.grad = f.backward(y.grad)
            
            if x.creator  is not None:
                funcs.append(x.creator)
    
        
class Fuction:
    def __call__(self, input):
        x = input.data
        y = self.forward(x)
        output = Varialbe(as_array(y))
        output.set_creator(self)
        self.input = input
        self.output = output
        return output
    
    def forward(self, x):
        raise NotImplementedError()
    
    def backward(self, gy):
        raise NotImplementedError()

class Square(Fuction):
    def forward(self, x):
        y = x ** 2
        return y
    def backward(self, gy):
        x = self.input.data
        gx = 2 * x * gy
        return gx

class Exp(Fuction):
    def forward(self, x):
        y = np.exp(x)
        return y
    
    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return gx

def numerical_deff(f, x, eps=1e-4):
    x0 = Varialbe(x.data - eps)
    x1 = Varialbe(x.data + eps)
    y0 = f(x0)
    y1 = f(x1)
    return (y1.data - y0.data) / (2 * eps)


def square(x):
    f = Square()
    return f(x)

def exp(x):
    f =  Exp()
    return f(x)

def as_array(x):
    if np.isscalar(x):
        return np.array(x)
    return x

x = Varialbe(np.array(0.5))
y = square(exp(square(x)))
y.backward()
print(x.grad)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
#步骤11 可变长参数

import numpy as np
import unittest

class SquareTest(unittest.TestCase):
    def test_forward(self):
        x = Varialbe(np.array(2.0))
        y = square(x)
        expected = np.array(4.0)
        self.assertEqual(y.data, expected)
    
    def test_backward(self):
        x = Varialbe(np.array(3.))
        y = square(x)
        y.backward()
        expected = np.array(6.0)
        self.assertEqual(x.grad, expected)
    
    def test_gradient_check(self):
        x = Varialbe(np.random.rand(1))
        y = square(x)
        y.backward()
        num_grad = numerical_deff(square, x)
        flg = np.allclose(x.grad, num_grad)
        self.assertTrue(flg)
        
        
# 调用一个Function时,Function会记录左右的input和output,同时output会记录生成它的Func
class Varialbe:
    def __init__(self, data):
        if data is not None:
            if not isinstance(data, np.ndarray):
                raise TypeError('{} is not supported'.format(type(data)))
        self.data = data
        self.grad = None
        self.creator = None
        self.generation = 0
    
    def set_creator(self, func):
        self.creator = func
        self.generation = func.generation + 1
    # def backward(self):
    #     f = self.creator
    #     if f is not None:
    #         x = f.input
    #         x.grad = f.backward(self.grad)
    #         x.backward() 
    
    def backward(self):
        if self.grad is None:
            self.grad = np.ones_like(self.data)
            
        funcs = []
        seen_set = set()
        
        # 反向传播的时候,按照generation
        def add_func(f):
            if f not in seen_set:
                funcs.append(f)
                seen_set.add(f)
                funcs.sort(key=lambda x: x.generation)
        add_func(self.creator)
            
        funcs = [self.creator]
        while funcs:
            f = funcs.pop()
            gys = [output.grad for output in f.outputs]
            gxs = f.backward(*gys)
            if not isinstance(gxs, tuple):
                gxs = (gxs, )
            for x, gx in zip(f.inputs, gxs):
                if x.grad is None: #为了节省内存,同一个Variable求完梯度后grad并不会清空,所以当新的公式也需要对该变量求导后,会导致grad累加,结果错误
                    x.grad = gx
                else:   
                    # 为了解决相同变量作为输入的问题x+x = y
                    x.grad = x.grad + gx
                
                if x.creator is not None:
                    # funcs.append(x.creator)
                    add_func(x.creator)
    def cleargrad(self):
        self.grad = None
        
class Fuction:
    def __call__(self, *inputs):

        xs = [x.data for x in inputs]
        ys = self.forward(*xs)
        if not isinstance(ys, tuple): 
            ys = (ys, )
        outputs = [Varialbe(as_array(y)) for y in ys]
       
        self.generation = max([x.generation for x in inputs])
        for output in outputs:
            output.set_creator(self)

        self.inputs = inputs
        self.outputs = outputs
        # print(type(self.inputs))
        # print(type(self.outputs))
        # print(type(ys))
        return  outputs if len(outputs) > 1 else outputs[0]
    
    def forward(self, x):
        raise NotImplementedError()
    
    def backward(self, gy):
        raise NotImplementedError()

class Square(Fuction):
    def forward(self, x):
        print(type(x))
        y = x ** 2
        return y
    def backward(self, gy):
        x = self.inputs[0].data # inputs是tuple类型变量,对于输入只有一个元素的tuple(x,)
        gx = 2 * x * gy
        return gx

class Exp(Fuction):
    def forward(self, x):
        y = np.exp(x)
        return y
    
    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return 
    
class Add(Fuction):
    def forward(self, x0, x1):
        y = x0 + x1
        return y
    def backward(self, gy):
        return gy, gy
    
def numerical_deff(f, x, eps=1e-4):
    x0 = Varialbe(x.data - eps)
    x1 = Varialbe(x.data + eps)
    y0 = f(x0)
    y1 = f(x1)
    return (y1.data - y0.data) / (2 * eps)


def square(x):
    f = Square()
    z = f(x)
    return z

def exp(x):
    f =  Exp()
    return f(x)

def as_array(x):
    if np.isscalar(x):
        return np.array(x)
    return x

def add(x0, x1):
    return Add()(x0, x1)


x = Varialbe(np.array(2.0))
a = square(x)
y = add(square(a), square(a))
y.backward()

print(y.data)
print(x.grad)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/79214
推荐阅读
相关标签
  

闽ICP备14008679号