当前位置:   article > 正文

深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)

深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)

目录

YOLOv1:

YOLOv2:

YOLOv3:

YOLOv4:

YOLOv5:

总结:


YOLO(You Only Look Once)是一系列基于深度学习的实时目标检测算法。

自从2015年首次被提出以来,YOLO系列不断发展,推出了多个版本,包括YOLOv1, YOLOv2, YOLOv3, YOLOv4, 和YOLOv5等。下面是对YOLO系列的详解:

YOLOv1:

  • 提出时间: 2015年。
  • 主要贡献: 将目标检测任务转换为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。
  • 创新点: You Only Look Once (YOLO)这个名字来源于模型的前向传播只需查看一次即可完成检测,大大提高了检测速度。
  • 局限性: YOLOv1在准确性方面不如当时的一些竞争算法,因为它将问题简化为单个网络,牺牲了一定的精度以换取速度。

YOLOv1的主要贡献是将目标检测任务简化为一个回归问题,并通过单个神经网络直接预测图像中的边界框和类别概率,实现了端到端的训练和检测。

YOLOv1的工作流程可以分为以下几个步骤:

  1. 图像分割:首先将输入图像划分为一个个格子(grid cell),每个格子负责预测中心点落在该格子内的目标的边界框和类别概率。如果目标中心点落在格子的边界上,那么该目标由边界相邻的格子共同预测,并使用非极大值抑制(NMS)来合并预测结果。
  2. 特征提取:YOLOv1使用了一种名为Darknet-19的特征提取网络,它包含19个卷积层和5个最大池化层。Darknet-19能够有效地从图像中提取出有用的特征,为后续的边界框预测和类别概率估计提供支持。
  3. 边界框预测:每个格子会预测多个边界框(bounding boxes),每个边界框与对应的类别概率相结合,形成一个预测结果。边界框的预测包括边界框的中心坐标(相对于格子的中心)、宽度和高度(相对于整个图像的大小),以及置信度分数。
  4. 类别概率估计:每个格子和每个预测的边界框都会输出一个类别分布,表示该边界框包含不同类别的概率。
  5. 损失函数:YOLOv1定义了一个多任务损失函数,包括位置损失(定位误差)和置信度损失,用于训练网络以最小化预测结果和真
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/102202?site
推荐阅读
相关标签
  

闽ICP备14008679号