当前位置:   article > 正文

bp神经网络隐含层神经元个数_如何确定神经网络的层数和隐藏层神经元数量

bp神经网络隐含层神经元个数

7b586b6be63bbc512036aa29f91286ad.png

一、导语

BP神经网络主要由输入层隐藏层输出层构成,输入和输出层的节点数是固定的,不论是回归还是分类任务,选择合适的层数以及隐藏层节点数,在很大程度上都会影响神经网络的性能。

65699217f7aa6f94909245e20b4dfaf6.png
图源:吴恩达-深度学习

输入层和输出层的节点数量很容易得到。输入层的神经元数量等于待处理数据中输入变量的数量,输出层的神经元的数量等于与每个输入关联的输出的数量。但是真正的困难之处在于确定合适的隐藏层及其神经元的数量

二、隐藏层的层数

如何确定隐藏层的层数是一个至关重要的问题。首先需要注意一点:

在神经网络中,当且仅当数据非线性分离时才需要隐藏层!

Since a single sufficiently large hidden layer is adequate for approximation of most functions, why would anyone ever use more?
声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号