当前位置:   article > 正文

基于keras平台CNN神经网络模型的服装识别分析_用神经网络模型来求解时装类别识别问题

用神经网络模型来求解时装类别识别问题

 在许多介绍图像识别任务的介绍中,通常使用着名的MNIST数据集。

最近我们被客户要求撰写关于图像识别的研究报告,包括一些图形和统计输出。但是,这些数据存在一些问题:

1.太简单了。例如,一个简单的MLP模型可以达到99%的准确度,而一个2层CNN可以达到99%的准确度。

2.它被过度使用。从字面上看,每台机器学习入门文章或图像识别任务都将使用此数据集作为基准。但是,因为获得近乎完美的分类结果非常容易,所以它的实用性会受到打折,并且对于现代机器学习/ AI任务并不真正有用。

因此,出现Fashion-MNIST数据集。该数据集是作为MNIST数据的直接替代而开发的,其意义在于:

1.尺寸和风格相同:28x28灰度图像

2.每个图像与10个类中的1个相关联,即:

       0:T恤/上衣,

       1:裤子,

       2:套头衫,

       3:连衣裙,

       4 :外套,

       5:凉鞋,

       6:衬衫,

       7:运动鞋,

       8:背包,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/877982
推荐阅读
相关标签
  

闽ICP备14008679号