当前位置:   article > 正文

2024年大数据最全spark 用户画像挖掘分析_用户画像数据分析如何做?看这篇就够了_数据分析画像

数据分析画像

其实这一切,都是基于用户画像的精准化营销的常见套路。

在互联网大数据时代,全社会信息化程度越来越高,无处不在的网络将人和设备连接在一起,用户的一切行为都是可追溯和分析的。随着大数据技术的深入应用,企业也日益聚焦在如何利用大数据来为精细化运营和精准营销服务,而要实现这些目标的前提基础,首先则需要建立一套完善的用户画像。

1、什么是用户画像

用户画像,即将用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或者产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。

49f59be25dbd45fe78a6ba22f8f75f71.png

2、用户画像的构建过程

用户画像的构建过程其实就是对用户“打标签”,其过程可以拆分为以下几个关键步骤:

3eccb2f3a73b85e4922eb4b692bd25a2.png

1、确定对象

用户画像首先是基于业务模型的,所以进行标签建设,首先要清楚对哪类对象建设标签。对象是客观世界中研究目标的抽象,有实体的对象,也有虚拟的对象。在企业经营过程中可以抽象出非常多的对象,包括“人”“物”“关系”,这些对象在不同的业务场景下交叉产生联系,是企业的重要的资产,需要全面刻画了解。

2、对象ID打通

在确认对象后,由于存在同一个对象在多个不同业务中的标识ID不同的情况,因此需要将同一个具体对象的不同ID标识打通,以便所有业务数据都能在该对象上打通,完成对该对象的全面数据刻画。

3、标签类目设计、标签设计

企业业务需要使用的标签项比较多时,就会给使用、查找以及管理标签带来麻烦,这种情况下就需要对标签类目进行设计,比如构建多级目录分类管理,保证标签类目的易理解、易使用、易管理。

通过标签类目设计,已经有了某类对象的标签体系框架,只是还没有具体的标签内容。标签设计就是设计合适的标签并将其挂载到标签类目。

2acf7f23a18a495ed80c0d9793ca83e8.png

4、标签融合表设计、标签融合表实现

对象的标签体系是对象有价值数据的全域标签,跨业务板块、跨主题,比如用户属性、用户行为、用户消费、风险控制、社交属性等都是标签,在设计标签融合表时可以选择二维表或者K-V表的组织方式,因为二维表更能满足性能和易用性的要求,所以推荐使用二维表作为标签融合表的实现方式。在大数据场景下,如果标签众多,可以通过多张融合表来存储标签。

5、作业流程调度、开发性能调优

完成标签融合表设计后,就需要添加ETL作业流程调度,并针对调度过程进行性能调优,同时配置相应的质量监控和报警机制,持续进行任务运维监控。

6、上线应用

完成所有测试后,将验证合格的系统部署到正式环境,并开放给业务人员使用。

3、用户画像应用

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

后续会持续更新**

需要这份系统化资料的朋友,可以戳这里获取

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/黑客灵魂/article/detail/874974
推荐阅读
相关标签
  

闽ICP备14008679号