赞
踩
本文应该是目前全网最通俗易懂,而且比较全面的用verilog实现除法器的文章。首先说明一下本文的探讨的重点。我们首先从整数的除法开始讲起,然后慢慢延伸到小数的除法,和负数的除法。
对于一个除法器来说,他的实现框架应该是下面这个图:
在这个框架图中,A是被除数,B是除数,ready是说明此时的被除数和除数是有效的。而shang和yushu就是字面意思,代表的是除法的结果。而valid指的是此时的除法的结果是有效的。
那么设计完框架图之后 ,现在来设计一下时序图,一个理想的除法器的时序图应该如下所示:
从上图可以看出,在第一个时钟周期的时候输入divisor(除数)和dividend(被除数)之后,此时在下一个时钟周期,intergral(商)和remaider(余数)就会马上出现结果,这当然就是我们想要的时序。那么有没有可能实现这样完美的时序呢?有同学可能会说,这还不简单,直接用“/”运算不就可以了吗?但其实不太行,因为计算机可以很方便的做加减乘,就是不方便做除法,哪怕实现了除法,他的逻辑电路也是很复杂。对于为什么计算机做除法很复杂,可以参考下面这篇文章。
https://www.cnblogs.com/BinB-W/p/5706725.html
那么还是回到刚刚这个问题,如何实现上图中这个完美的除法器时序呢?vivado其实自带了一个divider generator的ip核,他就是能实现这个完美的时序,上图中我就是调用了divider generator,从而实现了这个时序图。在divider generator中,一共有三个模式,分别是Radix2,High Radix,Lutmult。对于这三个模式,在手册中可以查阅到他们的不同点在于延时和所用资源的不同。其中Radix2和Lutmult可以实现一个时钟周期后,结果就马上出现的时序,所以我们重点应该是放在这两个模式怎么用verilog进行实现。
通过查阅手册和查阅源代码,我们发现这两种模式的实现用到了Xilinx的原语,他的实现方式是偏硬件的,而不是通过纯verilog代码实现的。所以我们无法通过复现divider generator这个ip核,来实现完美的时序。
那么现在问题走到这里,接下来该怎么走呢?我们从手册中找到了答案,手册中有这样一句话:
意思是说,在除法器这个ip核中,用到了基2非恢复余数法。那么现在重点应该是放在如何用verilog实现非恢复余数法或者是恢复余数法。
对于恢复余数法,网上有很多文章,实事求是地说,基本上看不明白。我第一次看的时候,也是看的云里雾里的。后来我看了哈工大老师计算机组成原理(B站上有),并且自己手写了一遍除法,才算真的搞懂是什么意思。对于这个方法不理解的同学我建议你先看一下哈工大的这一节课:
我下面直接总结一下恢复余数法。对于恢复余数法,他的本质是描述了手写二进制除法的过程,在进行两个二进制的除法的时候,我们所作的唯一事情就是,给商上0或者上1。那么给商上完1之后,我们需要做什么呢?给商上完0之后,又需要做什么呢?其实只需要做下面两件事情,如下:
从上面的总结可以看出,恢复余数法的本质就是给三个变量赋值,分别是商、余数、除数。其中商的取值取决于余数和除数的大小比较;余数的取值取决于余数和除数的大小比较;除数则是一直右移即可。
有了上面的认识之后,我们可以提取出如下的关键verilog代码:
那么描述完恢复余数法的关键步骤之后,有些同学可能还会疑惑一件事情。在网上的代码中我们常常看到被除数需要左边接上很多0,除数需要右边接上很多0,这是为什么呢?这个问题需要各位同学自己手写一下除法的过程,你才能真正明白。我的建议是你用1100_1100除以11_1001试一下。
那么现在来看看我们的时序图是什么样的:
从图中可以看出我们实现一次除法运算所需要的时钟周期是19个,和完美的时序相差还是比较远,但是没办法,计算机的结构限制了我们只能这样做。如果有同学实在是觉得这样做除法花费的时间太长,我的建议是可以去研究一下SRT算法、牛顿法和 GoldSchmidt 法,这里不再赘述。
讲完整数的除法之后现在来讲讲小数和负数的除法运算。对于小数来说,他其实可以通过乘以一个10,再除以一个10,从而化为了整数的运算。对于负数的除法来说,他需要多考虑一个负数的补码,这里我直接将源代码放在下面,各位同学搞懂了整数的运算,对于小数和负数那不会很难。
最后讲讲恢复余数法和非恢复余数法的区别,这两个的区别我建议是看看哈工大老师的下面这两节课
我总结的这两个方法的区别如下:
最后放上源代码,文章写到后面确实有点赶,因为等下要赶飞机了,有不懂的地方发评论吧。
module division( input wire sys_clk, input wire rst_n , input wire signed [16:0] A, input wire signed [16:0] B, input wire ready, output reg signed [16:0] shang, output reg signed [16:0] yushu, output reg valid ); reg work_flag; reg [15:0] yushu_qian; reg [31:0] chushu; reg [4:0] cnt; reg [15:0] shang_qian; always@(posedge sys_clk,negedge rst_n) if(!rst_n) work_flag <= 1'd0; else if(cnt == 'd16) work_flag <= 1'd0; else if(ready == 1'd1) work_flag <= 1'd1; always@(posedge sys_clk,negedge rst_n) if(!rst_n) yushu_qian <= 16'd0; else if(work_flag == 1'd0) yushu_qian <= (A[16] == 1'd1)?~A[15:0]+1'd1:A[15:0]; else if(work_flag == 1'd1) begin if(yushu_qian >= chushu) yushu_qian <= yushu_qian - chushu; else yushu_qian <= yushu_qian; end always@(posedge sys_clk,negedge rst_n) if(!rst_n) chushu <= 32'd0; else if(work_flag == 1'd0) chushu <= {(B[16] == 1'd1)?~B[15:0]+1'd1:B[15:0],16'd0}; else if(work_flag == 1'd1) chushu <= chushu>>1; always@(posedge sys_clk,negedge rst_n) if(!rst_n) cnt <= 'd0; else if(work_flag == 1'd0) cnt <= 'd0; else cnt <= cnt + 'd1; always@(posedge sys_clk,negedge rst_n) if(!rst_n) shang_qian <= 16'd0; else if(work_flag == 1'd0) shang_qian <= 16'd0; else if(work_flag == 1'd1) begin if(yushu_qian >= chushu) shang_qian[16-cnt] <= 1'd1; else shang_qian[16-cnt] <= 1'd0; end always@(posedge sys_clk,negedge rst_n) if(!rst_n) shang <= 17'd0; else if(cnt == 'd17) shang = (A[16]^B[16] == 1'd1)?{1'd1,~shang_qian+1'd1}:shang_qian; always@(posedge sys_clk,negedge rst_n) if(!rst_n) yushu <= 17'd0; else if(cnt == 'd17) yushu <= {A[16] == 1'd1}? {1'd1,~yushu_qian[15:0]+1'd1} :{1'd0,yushu_qian[15:0]}; always@(posedge sys_clk,negedge rst_n) if(!rst_n) valid <= 'd0; else if(cnt == 'd17) valid <= 'd1; else valid <= 'd0; endmodule
`timescale 1ns/1ns module tb_2(); reg signed [16:0] A; reg signed [16:0] B; reg sys_clk; reg rst_n; reg ready; division division_inst( .sys_clk (sys_clk), .rst_n (rst_n), .A (A ), .B (B ), .ready (ready) ); always #10 sys_clk = ~sys_clk; initial begin sys_clk = 1'd0; rst_n <= 1'd0; A <= 16'd0; B <= 16'd0; ready <= 1'd0; #10 rst_n <= 1'd1; #100; A <= -17'd27; B <= 17'd5; ready <= 1'd1; #20 ready <= 1'd0; #400; A <= 17'd33; B <= -17'd7; ready <= 1'd1; #20 ready <= 1'd0; #400; A <= -17'd39; B <= -17'd2; ready <= 1'd1; #20 ready <= 1'd0; #400; A <= 17'd17; B <= 17'd3; ready <= 1'd1; #20 ready <= 1'd0; end endmodule
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。