赞
踩
NLP近几年非常火,且发展特别快。像BERT、GPT-3、图神经网络、知识图谱等技术应运而生。我们正处在信息爆炸的时代、面对每天铺天盖地的网络资源和论文、很多时候我们面临的问题并不是缺资源,而是找准资源并高效学习。但很多时候你会发现,花费大量的时间在零零散散的内容上,但最后发现效率极低,浪费了很多宝贵的时间。为了迎合大家学习的需求,我们这次重磅推出了《自然语言处理精英训练营》。
课程覆盖了从经典的机器学习、文本处理技术、序列模型、深度学习、预训练模型、知识图谱、图神经网络所有必要的技术,30+项目案例帮助你在实战中学习成长。5个月时间博导级大咖全程辅导答疑、帮你告别疑难困惑。
01 课程大纲
第一部分:机器学习基础篇
| 什么是自然语言处理及现状和前景
| 自然语言处理应用
| 自然语言处理经典任务
| 学习自然语言处理技术
| 时间复杂度、空间复杂度
| 斐波那契数列的时间和空间复杂度
| 动态规划算法
| 经典的DP问题
第3章:机器学习基础 - 逻辑回归
| 分类问题以及逻辑回归重要性
| 逻辑回归的条件概率
| 最大似然估计
| 构建逻辑回归的目标函数
| 优化与梯度下降法
| 随机梯度下降法
| 理解什么是过拟合
| 如何防止过拟合现象
| L1与L2正则
| 交叉验证
| L1正则与拉普拉斯分布
| L2正则与高斯分布
第二部分:文本处理篇
| 文本分析流程
| 中英文的分词
| 最大匹配算法
| 基于语言模型的分词
| Stemming和Lemmazation
| 停用词的使用
| 拼写纠错问题
| 编辑距离的实现
| 暴力搜索法
| 基于后验概率的纠错
| 单词的独热编码表示
| 句子的独热编码表示
| tf-idf表示
| 句子相似度比较
| 独热编码下的单词语义相似度
| 从独热编码到词向量
| 词向量的可视化、句子向量
第7章:【项目作业】豆瓣电影评分预测
| 数据描述以及任务
| 中文分词
| 独热编码、tf-idf
| 分布式表示与Word2Vec
| BERT向量
| 句子向量
第8章:词向量技术
| 独热编码表示的优缺点
| 独热编码与分布式表示的比较
| 静态词向量与动态词向量
| 学习词向量 - 分布式假设
| SkipGram与CBOW
| SkipGram模型的目标
| 负采样(Negative Sampling)
| 基于矩阵分解的词向量学习
| 基于Glove的词向量学习
| 在非欧式空间中的词向量学习
| 问答系统和应用场景
| 问答系统搭建流程
| 文本的向量化表示
| FastText
| 倒排表技术
| 问答系统中的召回、排序
| 语言模型的必要性
| 马尔科夫假设
| Unigram语言模型
| Bigram、Trigram语言模型
| 语言模型的评估
| 语言模型的平滑技术
第三部分:自然语言处理与深度学习
| 理解神经网络
| 各类常见的激活函数
| 理解多层神经网络
| 反向传播算法
| 神经网络中的过拟合
| 浅层模型与深层模型对比
| 深度学习中的层次表示
| 环境安装
| Pytorch与Numpy的语法比较
| Pytorch中的Autograd用法
| Pytorch的Forward函数
| 从HMM到RNN模型
| RNN中的梯度问题
| 解决梯度爆炸问题
| 梯度消失与LSTM
| LSTM到GRU
| 双向LSTM模型
| 基于LSTM的生成
| 练习:利用Pytorch实现RNN/LSTM
| Seq2Seq模型
| Greedy Decoding
| Beam Search
| 长依赖所存在的问题
| 注意力机制
| 注意力机制的不同实现
| 构建Seq2Seq模型
| Beam Search的改造
| 模型调优
| 评估标准 Rouge
| Pointer-Generator Network
| PGN与Seq2Seq的融合
| 项目:智能营销文案生成
| 基于上下文的词向量技术
| 图像识别中的层次表示
| 文本领域中的层次表示
| 深度BI-LSTM
| ELMo模型简介及优缺点
| ELMo的训练与测试
| 基于LSTM模型的缺点
| Transformer结构概览
| 理解自注意力机制
| 位置信息的编码
| 理解Encoder与Decoder区别
| 理解Transformer的训练和预测
| Transformer的缺点
| 自编码器介绍
| Transformer Encoder
| Masked LM
| BERT模型及其不同训练方式
| ALBERT
| 对话系统介绍
| 常见的对话系统技术
| 闲聊型对话系统框架
| 语料库的准备及数据的处理
| Transformer Encoder回顾
| GPT-1,GPT-2,GPT-3
| ELMo的缺点
| 语言模型下同时考虑上下文
| Permutation LM
| 双流自注意力机制
| Transformer-XL
| XLNet总结
第四部分、信息抽取
| 信息抽取的应用和关键技术
| 命名实体识别
| NER识别常用技术
| 实体消歧技术
| 实体消歧常用技术
| 实体统一技术
| 指代消解
| 关系抽取的应用
| 基于规则的方法
| 基于监督学习方法
| Bootstrap方法
| Distant Supervision方法
| 从语法分析到依存文法分析
| 依存文法分析的应用
| 使用依存文法分析
| 基于图算法的依存文法分析
| 基于Transtion-based的依存文法分析
| 其他依存文法分析方法论
| 知识图谱以及重要性
| 知识图谱中的实体和关系
| 利用非结构化数据构造知识图谱
| 知识图谱的设计
| 基于知识图谱的问答系统框架
| 医疗专业词汇的使用
| 获取问句的意图
| 问句的解释,提取关键实体
| 讲意图和关键信息转化为查询语句
| 把查询结果转化为自然语言的形式
第五部分:图神经网络以及其他前沿主题
| 模型压缩的必要性
| 常见的模型压缩算法总览
| 基于矩阵分解的压缩技术
| 从BERT到ALBERT的压缩
| 基于贝叶斯模型的压缩技术
| 模型的量化
| 模型的蒸馏方法
| 卷积神经网络的回顾
| 图神经网络发展历程
| 图卷积神经网络(GCN)
| GAT详解
| 文本摘要生成任务介绍和应用场景
| 基于抽取式的摘要提取技术
| 关键句子的提取技术
| 基于图神经网络的摘要生成方法
| 基于生成式的摘要提取技术
| Seq2Seq、Transformer模型的使用
| 文本摘要系统的评估指标
| Node Classification
| Graph Classification
| Link Prediction
| Community Detection
| 推荐系统中的应用
| 文本分类中的应用
| 图神经网络的未来发展
| Uncertainty Prediction
| MLE, MAP, Bayesian
| 贝叶斯深度学习
| Stochastic Attention
| GNN与不确定性
| 小数据下的训练
| Adversial Attack
限时推出:《返学费计划》你学习我买单
仅限99人,关于活动和课程其他的细节
添加课程顾问微信
报名、课程咨询
????????????
02 课程中的部分案例
1. 基于语言模型的语法纠错 |
2. 基于SkipGram的推荐系统 |
3. 从零实现Word2Vec |
4. 基于神经网络的人脸识别 |
5. 基于LSTM的情感分析 |
6. 实现AI程序帮助写文章 |
7. 基于Transformer的机器翻译 |
8. 基于知识图谱的风控系统 |
9. 基于知识图谱的个性化教学 |
10. 利用GCN实现社交推荐 |
11. 基于GAT的虚假新闻检测 |
(剩下10+个案例被折叠,完整请咨询...) |
03 课程中的部分项目作业
1. 豆瓣电影评分预测
涉及到的知识点:
中文分词技术
独热编码、tf-idf
分布式表示与Word2Vec
BERT向量、句子向量
2. 智能客服问答系统
涉及到的知识点:
问答系统搭建流程
文本的向量化表示
FastText
倒排表
问答系统中的召回、排序
3. 基于闲聊的对话系统搭建
涉及到的知识点:
常见的对话系统技术
闲聊型对话系统框架
数据的处理技术
BERT的使用
Transformer的使用
4. 搭建基于医疗知识图谱的问答系统
涉及到的知识点:
医疗专业词汇的使用
获取问句的意图
问句的解释、提取关键实体
转化为查询语句
文本摘要生成介绍
关键词提取技术
图神经网络的摘要生成
基于生成式的摘要提取技术
文本摘要质量的评估
04 课程中带读的部分论文
主题 | 论文名称 |
机器学习 | XGBoost: A Scalable Tree Boosting System |
机器学习 | Regularization and Variable Selection via the Elastic Net |
词向量 | Evaluation methods for unsupervised word embeddings |
词向量 | Evaluation methods for unsupervised word embeddings |
词向量 | GloVe: Global Vectors for Word Representation |
词向量 | Deep Contexualized Word Representations |
词向量 | Attention is All You Need |
词向量 | BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding |
词向量 | XLNet: Generalized Autoregressive Pretraining for Language Understanding |
词向量 | KG-BERT: BERT for Knowledge Graph Completion |
词向量 | Language Models are Few-shot Learners |
图学习 | Semi-supervised Classification with Graph Convolutional Networks |
图学习 | Graph Attention Networks |
图学习 | GraphSAGE: Inductive Representation Learning on Large Graphs |
图学习 | Node2Vec: Scalable Feature Learning for Networks |
被折叠 | 其他数十篇文章...... |
05 课程适合谁?
大学生
理工科相关专业的本科/硕士/博士生,毕业后想从事NLP工作的人
希望能够深入AI领域,为科研或者出国做准备
希望系统性学习NLP领域的知识
在职人士
目前从事IT相关的工作,今后想做跟NLP相关的项目
目前从事AI相关的工作,希望与时俱进,加深对技术的理解
希望能够及时掌握前沿技术
06 报名须知
1、本课程为收费教学。
2、本期仅招收剩余名额有限。
3、品质保障!正式开课后7天内,无条件全额退款。
4、学习本课程需要具备一定的机器学习基础。
●●●
限时推出:《返学费计划》你学习我买单
仅限99人,关于活动和课程其他的细节
添加课程顾问微信
报名、课程咨询
????????????
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。