当前位置:   article > 正文

[算法] 二叉树的 先序遍历、中序遍历、后序遍历_先序遍历二叉树算法

先序遍历二叉树算法

本文根据清华大学邓俊辉老师课程《数据结构》总结,课程地址

遍历介绍

按照事先约定的某种规则或次序,对节点各访问一次而且仅一次。与向量和列表等线性结构一样,二叉树的这类访问也统称为遍历(traversal)。

二叉树本身并不具有天然的全局次序, 故为实现遍历,需通过在各节点与其孩子之间约定某种局部次序, 间接地定义某种全局次序。

按惯例左兄弟优先于右兄弟, 若记做节点 V ,及其左、右孩子 LR ,则下图所示,局
部访问的次序可有 V L RL V RL R V 三种选择。根据节点 V 在其中的访问次序,三种策略也相应地分别称作 先序遍历中序遍历后序遍历

这里写图片描述

可以根据节点 V 次序位置进行记忆,先序遍历中 V 位于前端,中序遍历中 V 位于中间,后序遍历中 V 位于后端。

下面说一下各个遍历的迭代式实现。

先序遍历

通过先序遍历操作后,返回结果的顺序如下图所示。 注意下图是最终返回的结果展示顺序,实现方法及流程并非如此。

先序遍历返回结果

C++ 实现代码如下:

//从当前节点出发,沿左分支不断深入,直至没有左分支的节点,沿途节点遇到后立即访问
template <typename T, typename VST> //元素类型、操作器
static void visitAlongLeftBranch(BinNodePosi(T) x, VST& visit, Stack<BinNodePosi(T)>& S) {
	while (x) {
		visit(x->data); //访问当前节点
		S.push(x->rChild); //右孩子入栈暂存(可优化:通过判断,避免空的右孩子入栈)
		x = x->lChild; //沿左分支深入一层
	}
}

template <typename T, typename VST> //元素类型、操作器
void travPre_I2(BinNodePosi(T) x, VST& visit) { //二叉树先序遍历算法(迭代版)
	Stack<BinNodePosi(T)> S; //辅助栈
	while (true) {
		visitAlongLeftBranch(x, visit, S); //从当前节点出发,逐批访问
		if (S.empty()) break; //直到栈空
		x = S.pop(); //弹出下一批的节点
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

根据上面的代码,举个例子。

先序遍历实现流程

上图所示的二叉树遍历,流程描述如下:

  1. 从节点 a 出发,沿左分支不断深入,直至没有左分支的节点,沿途节点遇到后立即访问。首先 a 的右节点 c 直接进栈,然后访问左节点 b
  2. b 的右节点直接进栈,此时其为空节点,所以空节点进栈,访问 b 的左节点,也为空,直接进行下一步;
  3. 弹出栈顶空节点,再弹出 c,将 c 的右节点 f 直接进栈,并访问左节点 d
  4. d 的右节点 e 直接进栈,并访问左节点 ;
  5. d 的左节点为空。接下来弹出栈顶的 e ,并将 e 的右节点(空节点)直接进栈,访问 e 的左节点;
  6. e 的左节点为空。接下来弹出栈顶的 f ,并将 f 的右节点(空节点)直接进栈,访问 f 的左节点 g
  7. g 的右节点(空节点)直接进栈, 访问 g 的左节点;
  8. g 的左节点为空。弹出g 的右节点(空节点),再弹出 f 的右节点(空节点);
  9. 栈为空,遍历结束。(其实上述描述的每一次循环都会做一次栈是否为空的检查

中序遍历

通过中序遍历操作后,返回结果的顺序如下图所示。
同样需注意下图是最终返回的结果展示顺序,实现方法及流程并非如此。

中序遍历返回结果

C++ 实现代码如下:

template <typename T> //从当前节点出发,沿左分支不断深入,直至没有左分支的节点
static void goAlongLeftBranch(BinNodePosi(T) x, Stack<BinNodePosi(T)>& S) {
	while (x) { S.push(x); x = x->lChild; } //当前节点入栈后随即向左侧分支深入,迭代直到无左孩子
}

template <typename T, typename VST> //元素类型、操作器
void travIn_I1(BinNodePosi(T) x, VST& visit) { //二叉树中序遍历算法(迭代版)
	Stack<BinNodePosi(T)> S; //辅助栈
	while (true) {
		goAlongLeftBranch(x, S); //从当前节点出发,逐批入栈
		if (S.empty()) break; //直至所有节点处理完毕
		x = S.pop(); visit(x->data); //弹出栈顶节点并访问之
		x = x->rChild; //转向右子树
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

根据上面的代码,举个例子。

中序遍历实现流程

上图所示的二叉树遍历,流程描述如下:

  1. 从节点 b 出发, b 进栈 S。沿左分支不断深入,遇到节点则入栈;
  2. 直至所有左分支节点处理完毕。(此时 S 中从上往下为 a、b);
  3. 弹出栈 S 顶节点 a 并访问之;
  4. 转向 a 右子树。到此处截止,为一个循环体操作。接下来对 a 右子树,对其重复循环体类似操作;
  5. 但这里a 右子树为空,所以继续弹出 b 。转向 b 右子树,对其进行重复循环体类似操作;
  6. 所以 f、d、c 依次入栈,c 在栈顶。弹出 c ,转向 c 右子树,重复循环体;
  7. c 右子树为空。弹出 d ,转向 d 右子树,重复循环体。
  8. e 入栈,弹出 e ,转向 c 右子树,重复循环体,c 右子树为空;
  9. 弹出 f,转向 f 右子树,重复循环体。
  10. g 入栈, g 出栈,转向 g 右子树,为空;
  11. 此时,没有新的节点入栈,栈中也没有其他节点,终止遍历操作。

后序遍历

通过后序遍历操作后,返回结果的顺序如下图所示。

后序遍历返回结果

C++ 实现代码如下:

template <typename T> //在以S栈顶节点为根的子树中,找到最高左侧可见叶节点
static void gotoHLVFL(Stack<BinNodePosi(T)>& S) { //沿途所遇节点依次入栈
	while (BinNodePosi(T) x = S.top()) //自顶而下,反复检查当前节点(即栈顶)
		if (HasLChild(*x)) { //尽可能向左
			if (HasRChild(*x)) S.push(x->rChild); //若有右孩子,优先入栈
			S.push(x->lChild); //然后才转至左孩子
		} else //实不得已
			S.push(x->rChild); //才向右
	S.pop(); //返回之前,弹出栈顶的空节点
}

template <typename T, typename VST>
void travPost_I(BinNodePosi(T) x, VST& visit) { //二叉树的后序遍历(迭代版)
	Stack<BinNodePosi(T)> S; //辅助栈
	if (x) S.push(x); //根节点入栈
	while (!S.empty()) {
		if (S.top() != x->parent) //若栈顶非当前节点之父(则必为其右兄),此时需
			gotoHLVFL(S); //在以其右兄为根之子树中,找到HLVFL(相当于递归深入其中)
		x = S.pop(); visit(x->data); //弹出栈顶(即前一节点之后继),并访问之
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

根据上面的代码,举个例子。

后序遍历实力流程1

  1. 找到最高左侧可见叶节点 k,若有右子树优先入栈(此处为 j),但优先往左子树方向走(i 入栈);
  2. i 的右子树 h 入栈,i 无左子树,所以继续对右子树 h 进行操作;
  3. h 的右子树 g 入栈,方向到左子树(b 入栈);
  4. b 的右子树 a 入栈,b 无左子树。继续对 a 进行操作,a 无子节点;
  5. 到此为止,第一次入栈操作结束,此时栈中顶而下依次为 abghijk
  6. 接下来弹出栈顶元素 a ,访问之;
  7. ba 的父节点,不用进行 入栈操作。弹出栈顶元素 b ,访问之;
  8. 接下来是 g ,非 b 的父节点,执行入栈操作,按照1~5步骤说的方法,依次将 fedc 入栈;

后序遍历实力流程2

  1. 接下来判断是否需要执行入栈,并不断从栈中弹出节点,并访问之;
  2. 最后,栈为空,遍历结束。
本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号