当前位置:   article > 正文

PyTorch深度学习(23)Transformer及网络结构ViT_torch multihead transformer网络结构

torch multihead transformer网络结构

Transformer

一、Transformer

1、简介

创新、模型效果
通用的模块 注意力机制
应用领域:cv nlp 信号处理
视觉、文本、语音、信号
核心: 提特征的方法  提的更好

应用NLP的文本任务

  • nlp word2vec 词向量
  • 每个词都是一个向量
  • 不同的语境中一个词的含义不同  

2、Attention 注意力机制

权重控制

语言:感兴趣的
图像:指定需要关注

(1)self-attention

作用:同样的词,语境不同,含义不同  

基于权重项,重构特征  
重构:计算与其他词之间的关系,对每个向量做重构  
输入向量——重构——输出重构完的向量  

attention帮助提取特征,包括局部特征

self-attention与attention的区别:

  • self-attention:我自己的词,和自己上下文进行计算
  • attention:与其他词进行计算

(2)Transformer细节

Input  Embedding  Queries  Keys  Values

以NLP中为例:

x1、x2为embeding得到的结果
由x1与x1、x2之间的关系
x1 询问——Queries q1
问自己——回答k1——q1k1算内积
x2 别人问我,给的答案 key2——q1k2
每个词都会问其他词与自己之间的关系  

x2问x1——q2k1

内积越大,关系越紧密,值越大;垂直 内积为0  

初始化权重参数矩阵,分别进行迭代优化,最终输出最好的值  
q、k、v是由训练得到——通过权重获得

  • q 要去查询  
  • k 等着被查  
  • v 实际的特征信息  

数值越大,特征越重要  
dk向量维度——排除掉维度对结果的影响
softmax归一化 0~1

(3)multi-header 多头注意力机制

每个词与其他词的关系由模型来定
同一个词,不同模型,关系结果不同
特征拼接
很多个特征,所有特征拼接在一起
再通过全连接层——降维


x1   q11   k11  q21  k21
x2   q12   k12  q22  k22

问题:先算后算q1k2,都无所谓
解决:需要加上序号

位置信息表达:对每个词加上单独的表达,位置编码

3、图像任务Transformer

NLp最火论文: Attention is all your need

视觉中的Attention:只关注主体

multi-head self attention 多头自注意力机制--类似于Group Convolution

  • 将值拆分
  • concat连接

文本——分词——每个词——上下文间关系
图像——分块embedding(固定大小分块)——确定区域——按顺序排列组合
第一块 与 第一块 到 N块的关系,最后叠加
Transformer——特征提取器

第一次卷积,卷积核区域很小,非常小特征
第二次,在前面的小块基础上
获取的特征区域逐渐变大,慢慢变全局
深度——感受野非常大
CNN——感受野
CNN问题:要获得全局视野需要很多层
Transformer与CNN相比的优势:

  1. 第一层:即考虑自己,又考虑全局
  2. 不需要堆叠,直接可以获得全局信息
  3. Transformer需要训练数据到位(预训练模型、训练改进)

二、ViT网络

1、Vision Transformer(ViT) 2020 CVPR

Transformer动图: 

 

ViT/16流程

  1. 16个patchEmbedding层(Linear Projection of Flattened Patches)
  2. Token(向量,加上posiiton enbedding)
  3. Transformer Encoder(重复堆叠L次)
  4. MLP Head
  5. 得到分类结果
  • Linear Projection of Flattened Patches(Embedding层)
  • Transformer Encoder
  • MLP Head(最终用于分类的层结构)

Embedding层:要求输入token(向量)序列,二维矩阵[num_token, token_dim]

2、实现步骤

通过一个卷积层来实现,以ViTB/16为例

  • 使用卷积核为16×16,stride为16,卷积核个数为768  [224, 224, 3] → [14, 14, 768] → 展平 → [198, 768]
  • 需要加上[class]token及Position Embedding,都是可训练参数
    • 拼接[class]token: Cat{[1, 768], [196, 768]} → [197, 768]
    • 叠加Position Embedding:[197, 768] → [197, 768]
    • 位置编码相似度——余弦相似度
  • Layer:Transformer Encoder中重复堆叠Encoder Block的次数
  • Hidden Size:Embedding层后每个token的dim(向量的长度)
  • MLP Size:Transformer Encoder中MLP Block第一个全连接的节点个数(是Hidden Size的四倍)
  • Heads:Transformer中Multi-Head Attention的heads数
    • Params:参数个数
  • Hybrid:传统卷积网络提取提取特征 ResNet StdConv2d;所有BatchNorm层替换成GroupNorm层;stage4中3个block移至stage3中

网络参数

ModelPatch SizeLayersHidden Size DMLP sizeHeadsParams
ViT-Base16×161276830721286M
Vit-Large16×16241024409616307M
ViT-Huge14×14321280512016632M

3、混合模型——R50-ViTB16

 

 4、网络代码

  1. """
  2. original code from rwightman:
  3. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
  4. """
  5. from functools import partial
  6. from collections import OrderedDict
  7. import torch
  8. import torch.nn as nn
  9. # 使用时,需要下载.pth预训练模型,先学习
  10. # 因为需要在非常大的训练集中训练,才会有很好的效果
  11. def drop_path(x, drop_prob: float = 0., training: bool = False):
  12. """
  13. Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
  14. This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
  15. the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
  16. See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
  17. changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
  18. 'survival rate' as the argument.
  19. """
  20. if drop_prob == 0. or not training:
  21. return x
  22. keep_prob = 1 - drop_prob
  23. shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
  24. random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
  25. random_tensor.floor_() # binarize
  26. output = x.div(keep_prob) * random_tensor
  27. return output
  28. class DropPath(nn.Module):
  29. """
  30. Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
  31. """
  32. def __init__(self, drop_prob=None):
  33. super(DropPath, self).__init__()
  34. self.drop_prob = drop_prob
  35. def forward(self, x):
  36. return drop_path(x, self.drop_prob, self.training)
  37. # Patch Embedding
  38. class PatchEmbed(nn.Module):
  39. """
  40. 2D Image to Patch Embedding
  41. """
  42. def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
  43. super().__init__()
  44. img_size = (img_size, img_size)
  45. patch_size = (patch_size, patch_size)
  46. self.img_size = img_size
  47. self.patch_size = patch_size
  48. self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) # (14, 14)
  49. self.num_patches = self.grid_size[0] * self.grid_size[1] # 14×14=196
  50. self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
  51. # nn.Identity() 建立一个输入层,什么都不做
  52. self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
  53. def forward(self, x):
  54. B, C, H, W = x.shape
  55. assert H == self.img_size[0] and W == self.img_size[1], \
  56. f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
  57. # flatten: [B, C, H, W] -> [B, C, HW]
  58. # transpose: [B, C, HW] -> [B, HW, C]
  59. x = self.proj(x).flatten(2).transpose(1, 2)
  60. x = self.norm(x)
  61. return x
  62. class Attention(nn.Module):
  63. def __init__(self,
  64. dim, # 输入token的dim
  65. num_heads=8,
  66. qkv_bias=False,
  67. qk_scale=None,
  68. attn_drop_ratio=0.,
  69. proj_drop_ratio=0.):
  70. super(Attention, self).__init__()
  71. self.num_heads = num_heads
  72. head_dim = dim // num_heads
  73. self.scale = qk_scale or head_dim ** -0.5
  74. self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
  75. self.attn_drop = nn.Dropout(attn_drop_ratio)
  76. self.proj = nn.Linear(dim, dim)
  77. self.proj_drop = nn.Dropout(proj_drop_ratio)
  78. def forward(self, x):
  79. # [batch_size, num_patches + 1, total_embed_dim]
  80. B, N, C = x.shape
  81. # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
  82. # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
  83. # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
  84. qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
  85. # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
  86. q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
  87. # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
  88. # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
  89. attn = (q @ k.transpose(-2, -1)) * self.scale
  90. attn = attn.softmax(dim=-1)
  91. attn = self.attn_drop(attn)
  92. # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
  93. # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
  94. # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
  95. x = (attn @ v).transpose(1, 2).reshape(B, N, C)
  96. x = self.proj(x)
  97. x = self.proj_drop(x)
  98. return x
  99. class Mlp(nn.Module):
  100. """
  101. MLP as used in Vision Transformer, MLP-Mixer and related networks
  102. """
  103. def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
  104. super().__init__()
  105. out_features = out_features or in_features
  106. hidden_features = hidden_features or in_features
  107. self.fc1 = nn.Linear(in_features, hidden_features)
  108. self.act = act_layer()
  109. self.fc2 = nn.Linear(hidden_features, out_features)
  110. self.drop = nn.Dropout(drop)
  111. def forward(self, x):
  112. x = self.fc1(x)
  113. x = self.act(x)
  114. x = self.drop(x)
  115. x = self.fc2(x)
  116. x = self.drop(x)
  117. return x
  118. class Block(nn.Module):
  119. def __init__(self,
  120. dim,
  121. num_heads,
  122. mlp_ratio=4.,
  123. qkv_bias=False,
  124. qk_scale=None,
  125. drop_ratio=0.,
  126. attn_drop_ratio=0.,
  127. drop_path_ratio=0.,
  128. act_layer=nn.GELU,
  129. norm_layer=nn.LayerNorm):
  130. super(Block, self).__init__()
  131. self.norm1 = norm_layer(dim)
  132. self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
  133. attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
  134. # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
  135. self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
  136. self.norm2 = norm_layer(dim)
  137. mlp_hidden_dim = int(dim * mlp_ratio)
  138. self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
  139. def forward(self, x):
  140. x = x + self.drop_path(self.attn(self.norm1(x)))
  141. x = x + self.drop_path(self.mlp(self.norm2(x)))
  142. return x
  143. class VisionTransformer(nn.Module):
  144. def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
  145. embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
  146. qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
  147. attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
  148. act_layer=None):
  149. """
  150. Args:
  151. img_size (int, tuple): input image size
  152. patch_size (int, tuple): patch size
  153. in_c (int): number of input channels
  154. num_classes (int): number of classes for classification head
  155. embed_dim (int): embedding dimension
  156. depth (int): depth of transformer Encoder Block的个数 L=12
  157. num_heads (int): number of attention heads
  158. mlp_ratio (int): ratio of mlp hidden dim to embedding dim
  159. qkv_bias (bool): enable bias for qkv if True
  160. qk_scale (float): override default qk scale of head_dim ** -0.5 if set
  161. representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set pre-logits全连接层的节点个数
  162. distilled (bool): model includes a distillation token and head as in DeiT models
  163. drop_ratio (float): dropout rate
  164. attn_drop_ratio (float): attention dropout rate
  165. drop_path_ratio (float): stochastic depth rate
  166. embed_layer (nn.Module): patch embedding layer
  167. norm_layer: (nn.Module): normalization layer
  168. """
  169. super(VisionTransformer, self).__init__()
  170. self.num_classes = num_classes
  171. self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
  172. self.num_tokens = 2 if distilled else 1
  173. norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
  174. act_layer = act_layer or nn.GELU
  175. self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
  176. num_patches = self.patch_embed.num_patches
  177. # 1-batch 1 768
  178. self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
  179. self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
  180. # num_patches 14×14 num_tokens 1
  181. self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
  182. self.pos_drop = nn.Dropout(p=drop_ratio)
  183. # 构建等差序列(递增序列) 0~drop_path_ratio depth个元素
  184. dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay rule
  185. # transformer encoder中encoder block
  186. self.blocks = nn.Sequential(*[
  187. Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
  188. drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
  189. norm_layer=norm_layer, act_layer=act_layer)
  190. for i in range(depth)
  191. ])
  192. self.norm = norm_layer(embed_dim)
  193. # Representation layer
  194. if representation_size and not distilled:
  195. self.has_logits = True
  196. self.num_features = representation_size
  197. self.pre_logits = nn.Sequential(OrderedDict([
  198. ("fc", nn.Linear(embed_dim, representation_size)),
  199. ("act", nn.Tanh())
  200. ]))
  201. else:
  202. self.has_logits = False
  203. self.pre_logits = nn.Identity()
  204. # Classifier head(s)
  205. self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
  206. self.head_dist = None
  207. if distilled:
  208. self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
  209. # Weight init 权重初始化
  210. nn.init.trunc_normal_(self.pos_embed, std=0.02)
  211. if self.dist_token is not None:
  212. nn.init.trunc_normal_(self.dist_token, std=0.02)
  213. nn.init.trunc_normal_(self.cls_token, std=0.02)
  214. self.apply(_init_vit_weights)
  215. def forward_features(self, x):
  216. # [B, C, H, W] -> [B, num_patches, embed_dim]
  217. # patch embedding
  218. x = self.patch_embed(x) # [B, 196, 768]
  219. # [1, 1, 768] -> [B, 1, 768] 复制batch_size份
  220. # Class token 1×768 与 196×768拼接 --> 197×768
  221. cls_token = self.cls_token.expand(x.shape[0], -1, -1)
  222. if self.dist_token is None:
  223. x = torch.cat((cls_token, x), dim=1) # [B, 197, 768] 在196维度concat,拼接后为197
  224. else:
  225. x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
  226. # Position Embedding 197×768
  227. x = self.pos_drop(x + self.pos_embed)
  228. # Transformer Encoder Encoder Block L(×12)
  229. x = self.blocks(x)
  230. # Layer Norm 197×768
  231. x = self.norm(x)
  232. if self.dist_token is None:
  233. return self.pre_logits(x[:, 0]) # 取第一个维度batch所有数据,取第二个维度索引为0的数据
  234. else:
  235. return x[:, 0], x[:, 1]
  236. def forward(self, x):
  237. x = self.forward_features(x)
  238. if self.head_dist is not None:
  239. x, x_dist = self.head(x[0]), self.head_dist(x[1])
  240. if self.training and not torch.jit.is_scripting():
  241. # during inference, return the average of both classifier predictions
  242. return x, x_dist
  243. else:
  244. return (x + x_dist) / 2
  245. else:
  246. # 对应最后Linear 全连接层
  247. x = self.head(x)
  248. return x
  249. def _init_vit_weights(m):
  250. """
  251. ViT weight initialization
  252. :param m: module
  253. """
  254. if isinstance(m, nn.Linear):
  255. nn.init.trunc_normal_(m.weight, std=.01)
  256. if m.bias is not None:
  257. nn.init.zeros_(m.bias)
  258. elif isinstance(m, nn.Conv2d):
  259. nn.init.kaiming_normal_(m.weight, mode="fan_out")
  260. if m.bias is not None:
  261. nn.init.zeros_(m.bias)
  262. elif isinstance(m, nn.LayerNorm):
  263. nn.init.zeros_(m.bias)
  264. nn.init.ones_(m.weight)
  265. def vit_base_patch16_224(num_classes: int = 1000):
  266. """
  267. ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
  268. ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  269. weights ported from official Google JAX impl:
  270. 链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f
  271. """
  272. model = VisionTransformer(img_size=224,
  273. patch_size=16,
  274. embed_dim=768,
  275. depth=12,
  276. num_heads=12,
  277. representation_size=None,
  278. num_classes=num_classes)
  279. return model
  280. # num_classes 对应ImageNet-21K的类别个数为21843
  281. def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
  282. """
  283. ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
  284. ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  285. weights ported from official Google JAX impl:
  286. https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
  287. """
  288. model = VisionTransformer(img_size=224,
  289. patch_size=16,
  290. embed_dim=768, # 对应Hidden size
  291. depth=12, # Layers
  292. num_heads=12,
  293. representation_size=768 if has_logits else None,
  294. num_classes=num_classes)
  295. return model
  296. def vit_base_patch32_224(num_classes: int = 1000):
  297. """
  298. ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
  299. ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  300. weights ported from official Google JAX impl:
  301. 链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密码: s5hl
  302. """
  303. model = VisionTransformer(img_size=224,
  304. patch_size=32,
  305. embed_dim=768,
  306. depth=12,
  307. num_heads=12,
  308. representation_size=None,
  309. num_classes=num_classes)
  310. return model
  311. def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
  312. """
  313. ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
  314. ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  315. weights ported from official Google JAX impl:
  316. https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
  317. """
  318. model = VisionTransformer(img_size=224,
  319. patch_size=32,
  320. embed_dim=768,
  321. depth=12,
  322. num_heads=12,
  323. representation_size=768 if has_logits else None,
  324. num_classes=num_classes)
  325. return model
  326. def vit_large_patch16_224(num_classes: int = 1000):
  327. """
  328. ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
  329. ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  330. weights ported from official Google JAX impl:
  331. 链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密码: qqt8
  332. """
  333. model = VisionTransformer(img_size=224,
  334. patch_size=16,
  335. embed_dim=1024,
  336. depth=24,
  337. num_heads=16,
  338. representation_size=None,
  339. num_classes=num_classes)
  340. return model
  341. def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
  342. """
  343. ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
  344. ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  345. weights ported from official Google JAX impl:
  346. https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
  347. """
  348. model = VisionTransformer(img_size=224,
  349. patch_size=16,
  350. embed_dim=1024,
  351. depth=24,
  352. num_heads=16,
  353. representation_size=1024 if has_logits else None,
  354. num_classes=num_classes)
  355. return model
  356. def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
  357. """
  358. ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
  359. ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  360. weights ported from official Google JAX impl:
  361. https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
  362. """
  363. model = VisionTransformer(img_size=224,
  364. patch_size=32,
  365. embed_dim=1024,
  366. depth=24,
  367. num_heads=16,
  368. representation_size=1024 if has_logits else None,
  369. num_classes=num_classes)
  370. return model
  371. def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
  372. """
  373. ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
  374. ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
  375. NOTE: converted weights not currently available, too large for github release hosting.
  376. """
  377. model = VisionTransformer(img_size=224,
  378. patch_size=14,
  379. embed_dim=1280,
  380. depth=32,
  381. num_heads=16,
  382. representation_size=1280 if has_logits else None,
  383. num_classes=num_classes)
  384. return model

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/543174
推荐阅读
相关标签
  

闽ICP备14008679号