赞
踩
文章主要介绍了NER的资源(NER语料及工具),并从distributed representation for input,context encoder和tag decoder三个维度介绍了目前现有的工作,并调研了目前最具代表性的深度学习方法。最后提出了目前NER系统面临的挑战以及未来的研究方向。
(1) NEs通常分为两种:generic NEs (e.g., person and location) and domain-specific NEs (e.g., proteins, enzymes, and genes)。
(2) 主流NER方法有以下四种:
近年来深度学习方法在多个领域取得巨大的成功,在NER系统上应用深度学习方法也成功在多个NER任务上达成SOTA。作者期望通过比较不同的深度学习架构,以获知哪些因素影响了NER的性能。
本文可视作NER系统的百科全书,非常详尽地介绍了NER的概念,传统方法以及深度学习方法。
目前在CoNLL03数据集上,Cloze-driven pretraining of self-attention networks达到SOTA(F-score93.5%);在OntoNotes5.0数据上BERT+Dice loss达到SOTA(F-score92.07%)。一些模型在NER数据上的性能表现如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。