当前位置:   article > 正文

Python人工智能学习路线(长篇干货)_python 图像ai处理学习路线

python 图像ai处理学习路线

本文篇幅较长,干货较多,面向于AI领域了解不深、有自学兴趣且有一些基础知识(高中+)的同学。

前言

谈到人工智能(AI)算法,常见不外乎有两方面信息:铺天盖地各种媒体提到的高薪就业、知乎上热门的算法岗“水深火热 灰飞烟灭”的梗【贩卖焦虑】。

其实,这两方面都是存在的,但都很片面,这里不加赘述。客观地说,数字化、智能化是人类社会发展的趋势,而当下人工智能无疑是一大热门,那是蓝海还是火海?我们回到老道理——水的深度,只有你自己去试试水才知道。

当你对上面情况有了初步的了解并想试试水,需要面对的问题是:AI入门容易吗?

答案其实是否定的,难!

AI领域需要钻研算法原理、大量复杂的公式及符号、无所适从的项目都是劝退一时热度初学者的原因。但对于一个初学者,这些原因根本上就是面对这样困难的学科却缺乏合适方法导致的。

  1. 反问一个玩笑,程序员怎么会没有方法呢?随手就定义一个Python方法(funtion)。。。
  2. def funtion():
  3. return 'haha,往下看,下面会介绍方法'

回到笔者,一名普普通通的程序员,当初也是”误打误撞“学习Python入门到机器学习、深度学习,至今有4个年头,踩了很多坑,下文说到的学习方法、具体化的学习路线也就填坑试错的经验罢了。

一、学习方法是?

说到学习方法,其实我们谈到的人工智能之所以智能,核心也在于其学习方法。而人工智能学习过程有两个要素:

1、学习目标是什么?(——什么目标函数

2、如何达到目标?(——什么算法)

可以发现这两个问题也是我们学习这门学科需要回答的所谓的学习方法也就是明确学习目标以及如何达到的方法。人工智能领域很多思路和人类学习是很共恰的!

1.1 学习目标是什么?

我们的学习目标比较清楚,就是入门人工智能领域,能完成一个AI相关的任务,或者找到相关的工作。

1.2 如何达到目标?

1、入门人工智能是个宽泛的目标,因此还得 将目标拆分成阶段性目标才易于执行,可以对应到下面--学习路线及建议资源的各个节点。

2、学习人工智能这门学科,需要提醒的是这本来就是件难事,所以实在搞不懂的知识可以放在后面补下,不要奢求一步到位(当然天赋了得另说),不要想一下子成为专家,可以从:懂得调用现成的算法模块(scikit-learn、tensorflow)做项目 -进阶-》懂得算法原理进一步精用、调优算法 -进阶-》领域专家。保持学习,循序渐进才是啃硬骨头的姿势。

3、啃硬骨头过程无疑是艰难的,所以慢慢地培养兴趣和及时的结果反馈是很重要的。在这方面,边学边敲代码是必须的,结合代码实践学习效率会比较高,还可以及时看到学习成果,就算是啃硬骨头看到牙印越来越深,不也是成果,也比较不容易放弃!

二、整体的学习路线及建议资源

本学习路线的基本的框架是:

首先宽泛了解领域,建立一定兴趣

→ 基础知识、工具准备

→ 机器学习|深度学习的入门课程、书籍及项目实践

→ (面试准备)

→ 自行扩展:工作中实战学习 或 学术界特定领域钻研,经典算法原理、项目实践

2.1 了解领域及培养兴趣

我们首先要对人工智能领域有个宽泛的了解,有自己的全局性的认识,产生一些判断,才不会人云亦云地因为“薪资高、压力大”等去做出选择或者放弃。再者你做的准备调研越多,确认方向后越不容易放弃(等门槛效应)。当然,最重要还是慢慢培养兴趣,这个事情如果没有兴趣不走心,能做得很好吗?

人工智能(Artificial Intelligence,AI)之研究目的是通过探索智慧的实质,扩展人类智能——促使智能主体会听语音识别机器翻译等)、会看图像识别文字识别等)、会说语音合成人机对话等)、会思考人机对弈专家系统等)、会学习知识表示,机器学习等)、会行动机器人自动驾驶汽车等)。一个经典的AI定义是:“ 智能主体可以理解数据及从中学习,并利用知识实现特定目标和任务的能力。”

技术层面来看(如下图),现在所说的人工智能技术基本上就是机器学习方面的(也就是,机器学习技术是我们入门AI的核心技术)。

AI除了机器学习,其他方面的如 知识库、专家系统等技术较为没落。关于人工智能的发展历程,可以看看我之前一篇文章 人工智能简史
机器学习是指非显式的 计算机程序可以从数据中学习,以此提高处理任务的水平。机器学习常见的任务有分类任务(如通过逻辑回归模型判断邮件是否为垃圾邮件类)、回归预测任务( 线性回归模型预测房价)等等。
深度学习是机器学习的一个子方向,是当下的热门,它通过搭建深层的 神经网络模型以处理任务。

应用领域上看,人工智能在众多的应用领域上面都有一定的发展,有语言识别、自然语言处理、图像识别、数据挖掘推荐系统、智能风控、机器人等方面。值得注意的的是,不同应用领域上,从技术层面是比较一致,但结合到实际应用场景,所需要的业务知识、算法、工程上面的要求,差别还是相当大的。回到应用领域的选择,可以结合技术现在的发展情况、自己的兴趣领域再做判断。

2.2 基础知识、工具准备

学习人工智能需要先掌握编程、数学方面的基本知识:AI算法工程师首先是一名程序员,掌握编程实现方法才不将容易论知识束之高阁。而数学是人工智能理论的奠基,是必不可少的。

2.2.1 编程语言方面

编程语言之于程序员,如宝剑之于侠士。编程语言就是程序员改变、创造数字虚拟世界的交互工具。

先简单介绍信息技术(IT)行业的情况,IT领域广泛按职能可以分为前端、后端、人工智能、嵌入式开发、游戏开发、运维、测试、网络安全等方面。前端领域常用技术栈为js\css\html,后端领域常用技术栈有Java\go\C++\php\Python等。

在人工智能领域,Python使用是比较广泛的,当然其他的语言也是可行的,如Java、C++、R语言等。语言也就工具,选择个适合的就好。结合自己的历程及语言的特性,AI小白还是建议可以从Python学起,理由如下:

1、因为其简单的语法及灵活的使用方法,Python很适合零基础入门;

2、Python有丰富的机器学习库,极大方便机器学习的开发;

3、Python在机器学习领域有较高的使用率,意味着社区庞大,应用范围广,市场上有较多的工作机会(具体可到招聘软件了解下);

1、多敲代码:只看书、视频而不敲代码是初学者的一个通病。要记住的是“纸上得来终觉浅”,程序员是一个工匠活,需要动手敲代码实践,熟能生巧。

2、谷歌 互联网的信息无所不包的,学会利用互联网自己解决问题是一项基本功。不懂可以谷歌,业界一句有趣的话:程序员是面向谷歌/stackoverflow编程的。

  • 建议资源:

以下资源只是一些个人的偏好推荐,挑一两种适合自己的资源学习就可以,不用全部都学浪费精力。如果都觉得不合适,按照自己的学习方式即可。

1、【Python入门书】首推Python经典书《Python编程从入门到实践.pdf(https://github.com/aialgorithm/AiPy/》,知识点通俗易懂,而且结合了项目实践,很适合初学者。注:Python在爬虫、web开发、游戏开发等方向也有应用,推荐本书主要学习下Python语法,而书后面的项目实战像有游戏开发\web开发,和机器学习关系不大,可以略过\自行了解下就好。

2、【Python入门教程】廖雪峰的Python在线学习教程,一个很大的特色是可以直接在线运行Python代码。

3、【Python入门视频】如果看书过于枯燥,可以结合视频学习,Python入门学习报培训班学习有点浪费,可以直接网易云课堂、Bilibili搜索相关的Python学习视频。我之前是看小甲鱼零基础入门学习Python课程,边看边敲敲代码,觉得还不错。

4、【Python机器学习库】学习完Python语法,再学习了解下Python上现成的机器学习库(模块包),了解基本功能学会调用它们(熟练掌握它们,主要还是要结合后面项目边学边实践才比较有效的。),一个初级的算法工程师(调包侠)基本就练成了。

重要的机器学习库有: pandas 数据分析、numpy 数值计算库、matplotlib可视化工具,推荐《利用pandas数据分析》有涵盖了这几部分内容。

scikit-learn 包含机器学习建模工具及算法,可以了解下官方文档https://scikit-learn.org.cn

用于搭建深度学习的神经网络模型的库有:keras、tensorflow、Pytorch等,其中keras更为简单易用,可以参考Keras官方文档https://keras.io/zh,以及Keras之父写的《Python深度学习》

5、【Python进阶书】《Python Cookbook》、《流畅的Python》 这两本内容难度有提升,适合Python语法的进阶。

2.2.2 数学方面

1、数学无疑是重要的,有良好的数学基础对于算法原理的理解及进阶至关重要。但这一点对于入门的初学者反而影响没那么大,对于初学者如果数学基础比较差,有个思路是先补点“数学的最小必要知识”:如线性代数的矩阵运算;高等数学的梯度求导;概率的条件、后验概率及贝叶斯定理等等。这样可以应付大部分算法的理解。

2、如果觉得数学有难度,数学公式、知识的理解建议不用硬啃,不懂时再反查,遇到再回来补效果会好很多。(如果你的数学没有问题,忽略这些,直接复习大学教材补下基础)

  • 建议资源

【数学基础知识】推荐黄博翻译整理的机器学习相关的数学基础知识,内容简要,还是挺不错的。

高等数学 线性代数 概率与数理统计

2.2.3 工具准备

对于程序员,好的工具就是生产力!

1、 搜索引擎:学习开发的过程,很经常搜索问题、解决bug。搜索引擎的内容质量 首推谷歌,其次bing,再者才是百度、知乎等。谷歌如果使用不了,试试谷歌助手、科学翻墙、谷歌镜像网站,网上有教程自行了解。

2、翻译:AI领域最新的研究成果、论文基本都是英文的,而如果英文阅读比较一般,可以备个有道词典、wps文档翻译。

3、Python编辑器(Python环境):首推JupyterLab,JupyterLab很方便数据分析操作,可以单元格中逐步运行代码验证结果。建议直接下载安装个anaconda,里面都有。

2.3 机器学习\深度学习入门

深度学习是机器学习的子分支,整体的内容是比较一致的,与传统机器学习有些差异的地方(如特征生成、模型定义方面), 因此两者可以分开学习。都学习的话,建议可以先学机器学习再学深度学习。

机器学习\深度学习的内容可以分为两部分,一部分是算法原理的理解,如神经网络模型正向反向传播原理、SVM原理、GBDT原理等等,这部分内容的理解相对较难,学习周期较长。另一部分是算法工程实现的知识,如现实问题的理解、如何清洗数据、生成特征、选择模型及评估等

对于初学者的建议,可以“先知其然,再知其所以然”,跟着课程\书学习,明白大致的算法原理及工程上是如何做的。再用简单的算法整个流程走一遍,结合实践过程中不断的比较和尝试各种算法,更容易搞透算法原理,而且这样可以避免云里雾里地学习各种算法原理。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

二、Python必备开发工具

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、Python练习题

检查学习结果。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

 最后祝大家天天进步!!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/548258
推荐阅读
相关标签
  

闽ICP备14008679号