当前位置:   article > 正文

分类预测 | Matlab实现CNN-GSSVM卷积神经网络结合网格搜索算法优化支持向量机多特征分类预测_matlab实现卷积神经网络特征融合

matlab实现卷积神经网络特征融合

分类预测 | Matlab实现CNN-GSSVM卷积神经网络结合网格搜索算法优化支持向量机多特征分类预测

预测效果

1
2
3
4
5

基本介绍

分类预测 | Matlab实现CNN-GSSVM卷积神经网络结合网格搜索算法优化支持向量机多特征分类预测
1.Matlab实现CNN-GSSVM卷积神经网络结合网格搜索优化支持向量机多特征分类预测,运行环境Matlab2020b及以上;
2.命令窗口输出分类准确率,可在下载区获取数据和程序内容。
3.data为数据集,输入12个特征,分四类,MainCNN_GSSVMNC为程序,采用CNN提取特征,网格搜索优化LIBSVM进行数据分类。

模型描述

CNN-GSSVM是一种将卷积神经网络(CNN)与网格搜索支持向量机(GSSVM)相结合的多特征分类预测方法。该方法的核心思想是使用CNN提取多个特征,然后使用GSSVM对这些特征进行分类预测,以提高分类准确性。
具体来说,CNN-GSSVM方法的步骤如下:

  • 使用CNN提取多个特征:首先,将训练数据输入CNN进行训练,得到多个特征图。这些特征图可以捕捉不同尺度和角度的图像特征。
  • 特征选择:通过特征选择方法,选择最具有代表性的特征图,以减少特征维数。
  • 网格搜索:使用GSSVM对选定的特征进行分类预测。在GSSVM中,需要设置多个参数,如惩罚参数C和核函数参数gamma。通过网格搜索方法,可以找到最佳的参数组合,以最大化分类准确性。
  • 模型评估:使用测试数据评估模型性能。可以计算多个指标,如准确率等。

总的来说,CNN-GSSVM方法可以有效地利用CNN提取的多个特征,通过GSSVM进行分类预测,提高分类准确性。同时,通过网格搜索方法,可以找到最佳的参数组合,进一步提高分类性能。

程序设计

  • 完整源码私信博主。

以下是CNN-GSSVM方法的伪代码:

  1. CNN特征提取
输入:训练数据集X_train,测试数据集X_test
输出:训练数据的CNN特征X_train_cnn,测试数据的CNN特征X_test_cnn
定义CNN模型
对训练数据集X_train进行训练,得到CNN模型
对训练数据集X_train和测试数据集X_test分别进行特征提取
将训练数据的CNN特征保存为X_train_cnn,测试数据的CNN特征保存为X_test_cnn
  1. 特征选择
输入:训练数据的CNN特征X_train_cnn,训练数据的标签y_train
输出:选择后的特征X_train_selected_cnn,测试数据的选择特征X_test_selected_cnn
对训练数据的CNN特征X_train_cnn进行特征选择
使用特征选择方法,选择最具有代表性的特征
将选择后的训练数据的CNN特征保存为X_train_selected_cnn,测试数据的选择特征保存为X_test_selected_cnn
  1. 网格搜索
输入:选择后的训练数据的CNN特征X_train_selected_cnn,训练数据的标签y_train,测试数据的选择特征X_test_selected_cnn,测试数据的标签y_test
输出:最佳的SVM模型model
定义SVM模型
定义参数C的搜索范围C_range
定义参数gamma的搜索范围gamma_range
定义评价指标metric
使用网格搜索方法,在参数范围内搜索最佳的参数组合,使得评价指标最大化
得到最佳的SVM模型model
  1. 模型评估
输入:最佳的SVM模型model,测试数据的选择特征X_test_selected_cnn,测试数据的标签y_test
输出:模型性能评估指标accuracy、recall、F1-score
对测试数据的选择特征X_test_selected_cnn进行预测
计算模型性能评估指标accuracy、recall、F1-score等指标
% 定义CNN模型
net = alexnet;

% 加载数据
imds_train = imageDatastore('train_dir', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
imds_test = imageDatastore('test_dir', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');

% 提取训练数据的CNN特征
X_train_cnn = activations(net, imds_train, 'fc7', 'MiniBatchSize', 32, 'OutputAs', 'columns');
y_train = imds_train.Labels;

% 提取测试数据的CNN特征
X_test_cnn = activations(net, imds_test, 'fc7', 'MiniBatchSize', 32, 'OutputAs', 'columns');
y_test = imds_test.Labels;
% 定义参数范围和评价指标
C_range = [0.01, 0.1, 1, 10, 100];
gamma_range = [0.001, 0.01, 0.1, 1, 10];
metric = 'accuracy';

% 使用网格搜索方法,搜索最佳参数组合
svm_model = LIBSVM(X_train_selected_cnn, y_train, svm_params);

% 得到最佳的SVM模型
model = svm_model.BestModel;
% 对测试数据进行预测
y_pred = predict(model, X_test_selected_cnn);

% 计算模型性能评估指标
accuracy = sum(y_pred == y_test) / numel(y_test);
C = confusionmat(y_test, y_pred);
precision = diag(C) ./ sum(C, 1)';
recall = diag(C) ./ sum(C, 2);
F1_score = 2 .* precision .* recall ./ (precision + recall);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

学习总结

CNN-GSSVM方法可以有效地利用CNN提取的多个特征,通过GSSVM进行分类预测,提高分类准确性。同时,通过网格搜索方法,可以找到最佳的参数组合,进一步提高分类性能。CNN-GSSVM适用于各种图像、语音、文本等分类任务。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/151297
推荐阅读
相关标签
  

闽ICP备14008679号