当前位置:   article > 正文

HDFS只支持文件append操作, 而依赖HDFS的HBase如何完成增删改查功能

HDFS只支持文件append操作, 而依赖HDFS的HBase如何完成增删改查功能

Hbase  没有使用 map reduce . 采用了映射.


一直疑惑Hbase怎么更新hdfs文件。因为HBase是一个支持高并发随机读写的数据库,而hdfs只适合于大批量数据处理,hdfs文件只能写一次,一旦关闭就再也不能修改了。而HBase却将数据存储在hdfs上!让人费解。
原来的猜想是Hbase每次将更新写入磁盘都会创建一个新的hdfs文件,存放该数据旧版本的文件需要合并并最终丢弃,如果是这样的话,其随机读写的性能如何保证?在网上找到了两篇文章很好的解释了这个问题。
一篇是hadoop论坛上2007年底的一个帖子:HBase-implementation-question
下面是对这个帖子的一个摘要:
----------------------
1. HBase用Hadoop MapFile(org.apache.hadoop.io.MapFile.java)存储数据,用SequenceFile存储Redo Log(后者当时是HBase的一个缺点,因为日志文件关闭前都不会持久化Hbase <wbr>如何更新 <wbr>HDFS <wbr>文件,随着hdfs引入append功能,现在这个问题已经得到解决)。
2. 每一次Hbase服务器收到写请求,都会先写redo log,然后更新内存中的缓存。缓存会定期的刷入hdfs的一个新创建的MapFile。文件基于列创建,因此任何一个MapFile只包含一个特定列的数据。
3. 当某一列的MapFile数量超过配置的阈值时,一个后台线程开始将现有的MapFile合并为一个文件。这个操作叫 Compaction。在合并的过程中,读写不会被阻塞。
4. 读操作会先检查缓存,若未命中,则从最新的MapFile开始,依次往最老的MapFile找数据。可以想象一次随机读可能需要扫描多个文件。
----------------------
上面处理过程最让人担心的是Compaction的性能问题。由于Hbase的数据是排好序的,文件合并本身是一个对内存和CPU都占用较少的过程,但产生的IO负担让人担忧。文中没有讲解Compaction的细节,在网上找到一篇非常好的博文:Visualizing HBase Flushes And Compactions
从这篇文章我们可以看到,Hbase把Compaction分为Major和Minor两类,而且通过参数可以限制MapFile文件的最大尺寸(默认为256MB),和缓存块的尺寸。用很精巧的算法平衡了MapFile数量和Compaction的次数及其产生的IO负担,文中提供了多项测试的结果图例,一目了然。

这下问题就很清楚了。hdfs文件确实是只能写一次就不能修改了,通常hdfs只适合于数据大批量处理。Hbase的文件和日志确实都是存储在hdfs中,但通过精致设计的算法实现了对高并发数据随机读写的完美支持,让人叹服!当然,这依赖于Hbase数据排序后存储的特性。其他的基于Hash寻址的NoSQL数据库恐怕无法效仿HBase将数据存储在hdfs上。


文章出处:http://blog.sina.com.cn/s/blog_62c493b101010ehd.html

割。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

hbase 架构 http://book.51cto.com/art/201408/447935.htm

HDFS和HBase的组合用于高效数据存储:http://book.51cto.com/art/201408/447943.htm



文章二: fu'za


HDFS只支持文件append操作, 而依赖HDFS的HBase如何完成增删改查功能

标签: hadoophdfshbasenosqlappend
1577人阅读 评论(0) 收藏 举报

1. HDFS的文件append功能

早期版本的HDFS不支持任何的文件更新操作,一旦一个文件创建、写完数据、并关闭之后,这个文件就再也不能被改变了。为什么这么设计?是为了与MapReduce完美配合,MapReduce的工作模式是接受一系列输入文件,经过map和reduce处理,直接产生一系列输出文件,而不是在原来的输入文件上做原位更新。为什么这么做?因为直接输出新文件比原位更新一个旧文件高效的多。

       在HDFS上,一个文件一直到它的close方法成功执行之后才会存在,才能被其他的client端所看见。如果某个client端在写文件时或者在close文件时失败了,那么这个文件就不会存在,就好像这个文件从来没写过,唯一恢复这个文件的方法,就是从头到尾重新再写一遍。

       Hadoop1.x版本一直都不支持文件的append功能,一直到Hadoop 2.x版本,append 功能才被添加到Hadoop Core中,允许向HDFS文件中追加写数据。为此,HDFS Core 也作出了一些重大的改变,以支持这一操作。append功能添加到HDFS经历了一番曲折和一段很长的时间(具体可以参考http://blog.cloudera.com/blog/2009/07/file-appends-in-hdfs/和 https://issues.apache.org/jira/browse/HADOOP-8230)。

 

2. HBase 如何完成数据更新和删除操作

       HBase依赖于HDFS来存储数据。HBase作为数据库,必须提供对HBase表中数据的增删改查,而HDFS的文件只支持append操作、不支持删除和更新操作,那么HBase如何依赖HDFS完成更新以及删除操作呢??。

2.1 更新操作

       HBase表中的数据当存放到HDFS中时,在HDFS看来,已经可以简单的理解成key-value对,其中key可以理解成是由:rowkey+column family+column qualifier+timestamp+type 组成。HBase 对新增的数据以及要更新的数据(理解成key-value对),都直接先写入MemStore结构中,MemStore是完全的内存结构,且是key有序的。当MemStore达到一定大小后,该MemStore一次性从内存flush到HDFS中(磁盘中),生成一个HFile文件,HFile文件同样是key有序的,并且是持久化的位于HDFS系统中的。通过这种机制,HBase对表的所有的插入和更新都转换成对HDFS的HFile文件的创建。

       你可能会迅速的想到,那查询怎么办?

       是的,这种方式解决了插入和更新的问题,而查询就变得相对麻烦。而这也正是HBase设计之初的想法:以查询性能的下降来换取更新性能的提升。

       事实上查询是如下来完成的。

       每当MemStore结构flush到HDFS上时,就会产生一个新的HFile文件,随着时间的推移,会产生一连串的HFile文件,这些HFile文件产生的先后顺序非常的重要,可以想象成他们按创建时间排成一个队列,最近产生的在最前面,较早产生的在最后面。当HBase执行查询操作时(可以理解为给出key,要找到value),首先查询内存中的MemStroe结构,如果命中,就返回结果,因为MemStore中的数据永远是最新的,如果不命中,就从前到后遍历之前产生的HFile文件队列,在每个HFile文件中查找key,看是否命中,如果命中即可返回(最新的数据排在最前面),如果不命中一直查找下去,直到所有HFile文件被搜索完结束。

由此可见,查询操作最坏情况下可能要遍历所有HFile文件,最好情况下在内存中MemStore即可命中,这也是为什么HBase查询性能波动大的原因。当然HBase也不会真的很傻的去遍历每个HFile文件中的内容,这个性能是无法忍受的,它采取了一些优化的措施:1、引入bloomfilter,对HFile中的key进行hash,当查询时,对查询key先过bloomfilter,看查询key是否可能在该HFile中,如果可能在,则进入第2步,不在则直接跳过该HFile;2、还记得吗?HFile是key有序的(具体实现是类SSTable结构),在有序的key上查找就有各种优化技术了,而不是单纯的遍历了。

通过以上机制,HBase很好的解决了插入和更新、以及查找的问题,但是问题还没有结束。细心的朋友很可能已经看出来,上述过程中,HFile文件一直在产生,HFile文件组成的列表一直在增大,而计算机资源是有限的,并且查询的性能也依赖HFile队列的长度,因此我们还需要一种合并HFile文件的机制,以保持适度的HFile文件个数。HBase中实现这种机制采用的是LSM树(一种NOSQL系统广泛使用的结构),LSM能够将多个内部key有序的小HFile文件合并生成一个大的HFile文件,当新的大的HFile文件生成后,HBase就能够删除原有的一系列旧的小的HFile文件,从而保持HFile队列不至于过长,查询操作也不至于查询过多的HFile文件。在LSM合并HFile的时候,HBase还会做很重要的两件事:1、将更新过的数据的旧版本的数据删除掉,只留下最新的版本;2、将标有删除标记(下面一节会讲到)的数据删除掉。

 

2.2 删除操作

       有了以上机制,HBase完成删除操作非常的简单,对将要删除的key-value对进行打标,通常是对key进行打标,将key中的type字段打标成“删除”标记,并将打标后的数据append到MemStore中,MemStore再flush到HFile中,HFile合并时,检查这个标记,所有带有“删除”标记的记录将被删除而不会合并到新的HFile中,这样HBase就完成了数据的删除操作。

 

3. HBase 的WAL

HBase的WAL(Write-Ahead-Log)机制是必须的,一个RegionServer通常与一个HLog一一对应,数据写入Region之前先写HLog能够保障数据的安全。 HLog使用Hadoop的SequenceFile存储日志,而HLog是一直连续不断追加写文件的,它强烈依赖SequenceFile的append功能。事实上正是HLog对append功能的强烈需求,或多或少推动了HDFS在最近的版本中添加了文件追加功能。

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号