当前位置:   article > 正文

线性回归_plot the evolution of cost

plot the evolution of cost

什么是回归分析

回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。通常使用曲线/线来拟合数据点,目标是使曲线到数据点的距离差异最小。

线性回归

线性回归是回归问题中的一种,线性回归假设目标值与特征之间线性相关,即满足一个多元一次方程。通过构建损失函数,来求解损失函数最小时的参数w和b。通长我们可以表达成如下公式:

y_hat为预测值,自变量x和因变量y是已知的,而我们想实现的是预测新增一个x,其对应的y是多少。因此,为了构建这个函数关系,目标是通过已知数据点,求解线性模型中w和b两个参数。

目标/损失函数

求解最佳参数,需要一个标准来对结果进行衡量,为此我们需要定量化一个目标函数式,使得计算机可以在求解过程中不断地优化。

针对任何模型求解问题,都是最终都是可以得到一组预测值y_hat ,对比已有的真实值 y ,数据行数为 n ,可以将损失函数定义如下:

即预测值与真实值之间的平均的平方距离,统计中一般称其为MSE(mean square error)均方误差。把之前的函数式代入损失函数,并且将需要求解的参数w和b看做是函数L的自变量,可得

现在的任务是求解最小化L时w和b的值,

即核心目标优化式为

求解方式有两种

1)最小二乘法(least square method)

求解 w 和 b 是使损失函数最小化的过程,在统计中,称为线性回归模型的最小二乘“参数估计”(parameter estimation)。我们可以将 L(w,b) 分别对 w 和 b 求导,得到

令上述两式为0,可得到 w 和 b 最优解的闭式(closed-form)解:

 

2)梯度下降(gradient descent)

梯度下降核心内容是对自变量进行不断的更新(针对w和b求偏导),使得目标函数不断逼近最小值的过程

code

建立linear_regression.py文件,用于实现线性回归的类文件,包含了线性回归内部的核心函数:

# -*- coding: utf-8 -*-

import numpy as np


class LinerRegression(object):

    def __init__(self, learning_rate=0.01, max_iter=100, seed=None):
        np.random.seed(seed)
        self.lr = lear
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/404520
推荐阅读
相关标签
  

闽ICP备14008679号