当前位置:   article > 正文

通信常识_compuserve客户端

compuserve客户端
bsc指的是基站控制器(Base Station Controller)。由一下模块组成:


  AM/CM模块:话路交换和信息交换的中心。


  BM模块:完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能。


  TCSM模块:完成复用解复用及码变换功能。


  具体信息可参考移动通讯相关知识。


  基站控制器(BSC):BSC控制一组基站,其任务是管理无线网络,即管理无线小区及其无线信道,无线设备的操作和维护,移动台的业务过程,并提供基站至MSC之间的接口。将有关无线控制的功能尽量的集中到BSC上来,以简化基站的设备,这是GSM的一个特色。它的功能列表如下:


  1. 无线基站的监视与管理,RBS资源由BSC控制,同时通过在话音信道上的内部软件测试及环路测试,BSC还可监视RBS的性能。爱立信的基站采用内部软件测试及环路测试在话音通道上对TRX进行监视。若检测出故障,将重新配置RBS,激活备用的TRX,这样原来的信道组保持不变。


  2. 无线资源的管理,BSC为每个小区配置业务及控制信道,为了能够准确的进行重新配置,BSC收集各种统计数据。比如损失呼叫的数量,成功与不成功的切换,每小区的业务量,无线环境等,特殊记录功能可以跟踪呼叫过程的所有事件,这些功能可检测网络故障和故障设备。


  3. 处理与移动台的连接,负责与移动台连接的建立和释放,给每一路话音分配一个逻辑信道,呼叫期间,BSC对连接进行监视,移动台及收发信机测量信号强度及话音质量,测量结果传回BSC。由BSC决定移动台及收发信机的发射功率,其宗旨是即保证好的连接质量,又将网络内的干扰降低到最小。


  4. 定位和切换,切换是由BSC控制的,定位功能不断的分析话音接续的质量,由此可作出是否应切换的决定,切换可以分为BSC内切换,MSC内BSC间的切换,MSC之间的切换。一种特殊切换称为小区内切换,当BSC发现某连接的话音质量太低,而测量结果中又找不到更好的小区时,BSC就将连接切换到本小区内另外一个逻辑信道上,希望通话质量有所改善。切换同时可以用于平衡小区间的负载,如果一个小区内的话务量太高,而相邻小区话务量较小,信号质量也可以接受,则会将部分通话强行切换到其它的小区上去。


  5. 寻呼管理,BSC负责分配从MSC来的寻呼消息,在这一方面,它其实是MSC和MS之间的特殊的透明通道。


  6. 传输网络的管理,BSC配置、分配并监视与RBS之间的64KBPS电路,它也直接控制RBS内的交换功能。此交换功能可以有效的使用64K的电路。


  7. 码型变换功能,将四个全速率GSM信道复用成一个64K信道的话音编码在BSC内完成,一个PCM时隙可以传输4个话音连接。这一功能是由TRAU来实现的。


  8. 话音编码。


  9. BSS的操作和


Mobile Switching Center -- 移动交换中心
  MSC是整个GSM网络的核心,它控制所有BSC的业务,提供交换功能及和系统内其它功能的连接,MSC可以直接提供或通过移动网关GMSC提供和公共电话交换网(PSTN)、综合业务数字网(ISDN)、公共数据网(PDN)等固定网的接口功能,把移动用户与移动用户、移动用户和固定网用户互相连接起来。
  MSC从GSM系统内的三个数据库,即归属位置寄存器(HLR)、拜访位置寄存器(VLR)和鉴权中心(AUC)中获取用户位置登记和呼叫请求所需的全部数据。另外,MSC也根据最新获取的信息请求更新数据库的部分数据。作为GSM网络的核心,MSC还支持位置登记、越区切换、自动漫游等具有移动特征的功能及其它网络功能。
  对于容量比较大的移动通信网,一个NSS(网络子系统)可包括若干个MSC、HLR和VLR。当某移动用户A进入到一个拜访移动交换中心(VMSC),为了建立对该移动用户A的呼叫,要通过移动用户A所归属的HLR(归属位置寄存器)获取路由信息。




9. Mobile-services Switching Center -- 移动业务交换中心
  MSC是GSM系统的核心。MSC处理所控制区域内MS的信令,处理移动用户的位置更新,MS发起和MS为被叫的呼叫过程以及越区切换等移动业务,并实现MS与固定网的互通。
Home Location Register -- 归属位置寄存器


HLR是GSM/GPRS/EDGE网络的CN(Core Network,核心网)的网元。它是一个数据库,存储着某个运营商的用户的相关。例如:补充业务、鉴权参数、APN(Access Point Name,接入点名称)、用户当前访问的MSC/VLR号码、用户当前访问的SGSN号码等。


HLR是GSM系统的中央数据库,存放着所有归属用户的信息,如用户的有关号码(IMSI和MSISDN)、用户类别、漫游能力、签约业务和补充业务等。此外,HLR还存储着每个归属用户有关的动态数据信息,如用户当前漫游所在的MSC/VLR地址(即位置信息)和分配给用户的补充业务。
Visited Location Registor -- 访问位置寄存器 


Visitor Location Register -- 拜访位置寄存器


Visiting Location Register, 访问位置寄存器


VLR动态地保存着进入其控制区域内的移动用户的相关数据,如位置区信息及补充业务参数等,并为已登记的移动用户提供建立呼叫接续的必要条件。VLR从该移动用户归属的HLR中获取并保存用户数据,并在MSC处理用户的移动业务时向MSC提供必要的用户数据。VLR一般都与MSC在一起综合实现。
AUthentication Center -- 鉴权中心


AUC是GSM系统的安全性管理单元,存储用以保护移动用户通信不受侵犯的必要信息。AUC一般与HLR合置在一起,在HLR/AUC内部,AUC数据作为部分数据表存在。


SGSN是GSM/GPRS/EDGE网络的CN(Core Network,核心网)的网元。它为鉴权和加密流程提供三参数组,以保证非授权的用户不能使用相应业务。


三参数组包含的参数有:RAND(Random Number,随机数),SRES(Sign Response,符号响应),Kc(Ciphering Key,加密密钥)。其中,SRES由RAND和Ki(鉴权密钥)通过A3算法计算得到,Kc由RAND和Ki通过A8算法计算得到。
Visited Mobile-services Switching Centre -- 访问移动交换中心 






PSTN
 
 目录·简介
·PSTN互联应用中需要注意的问题
·PSTN的应用
·公用网络中,什么东西以什么样的方式在改变
·新的公用网络中存在的技术问题
·PSTN到VOIP 企业语音转换全攻略








简介
所谓公用电话交换网(PSTN——Public Switch Telephone Network),即我们日常生活中常用的电话网。 众所周知,PSTN是一种以模拟技术为基础的电路交换网络。在众多的广域网互连技术中,通过PSTN进行互连所要求的通信费用最低,但其数据传输质量及传输速度也最差,同时PSTN的网络资源利用率也比较低。通过PSTN可以实现的访问:-拨号上Internet/Intranet/LAN;-两个或多个LAN之间的网络互连;-和其它广域网技术的互连 尽管PSTN在进行数据传输时存在这样或那样的问题,但这是一种仍不可替代的联网介质(技术)。特别是Bellcore发明的建立在PSTN基础之上的xDSL技术和产品的应用拓展了PSTN的发展和应用空间,使得联网速度可达到9Mbps~52Mbps之间。PSTN采用的技术 PSTN提供的是一个模拟的专有通道,通道之间经由若干个电话交换机连接而成。当两个主机或路由器设备需要通过PSTN连接时,在两端的网络接入侧(即用户回路侧)必须使用调制解调器(Modem)实现信号的模/数、数/模转换。 从OSI七层模型的角度来看,PSTN可以看成是物理层的一个简单的延伸,没有向用户提供流量控制、差错控制等服务。而且,由于PSTN是一种电路交换的方式,所以一条通路自建立直至释放,其全部带宽仅能被通路两端的设备使用,即使他们之间并没有任何数据需要传送。因此,这种电路交换的方式不能实现对网络带宽的充分利用。 通过PSTN进行网络互联举例 下图是一个通过PSTN连接两个局域网的网络互连的例子。在这两个局域网中,各有一个路由器,每个路由器均有一个串行端口与Modem相连,Modem再与PSTN相连,从而实现了这两个局域网的互连。 




PSTN互联应用中需要注意的问题


PSTN的入网方式比较简便灵活,通常有以下几种:◆通过普通拨号电话线入网。只要在通信双方原有的电话线上并接Modem,再将Modem与相应的上网设备相连即可。目前,大多数上网设备,如PC或者路由器,均提供有若干个串行端口,串行口和Modem之间采用RS-232等串行接口规范。这种连接方式的费用比较经济,收费价格与普通电话的收费相同,可适用于通信不太频繁的场合。◆通过租用电话专线入网。与普通拨号电话线方式相比,租用电话专线可以提供更高的通信速率和数据传输质量,但相应的费用也较前一种方式高。使用专线的接入方式与使用普通拨号线的接入方式没有太大的区别,但是省去了拨号连接的过程。通常,当决定使用专线方式时,用户必须向所在地的电信局提出申请,由电信局负责架设和开通。◆经普通拨号或租用专用电话线方式由PSTN转接入公共数据交换网(X.25或Frame-Relay等)的入网方式。利用该方式实现与远地的连接是一种较好的远程方式,因为公共数据交换网为用户提供可靠的面向连接的虚电路服务,其可靠性与传输速率都比PSTN强得多。




PSTN的应用


在从家庭中的电话机传送到中央局的过程中,语音要么以基本服务的模拟形式存在,要么在通过PBX访问时以数字形式存在。但是,一旦到达中央局以后,语音在PSTN上都是以数字形式存在—每路都是64Kbps的时分多路复用通道,传送脉冲编码调制语音采样信号。在TDM网络上拨打电话时永远不会经历语音质量之类的困惑,而且呼叫的语音质量也是个不容商量的参数。但是,这种语音质量传输的代价是服务供应商的巨大开销,不管交谈双方实际使用的带宽是多少,都要在整个呼叫过程中绑定网络资源。即使用基本的爱尔朗模型进行的简单流量分析也显示出网络资源和网络所服务的人群数量之间的线形依赖关系。进一步讲,过去几年中,Web访问的巨大吸引力在TDM网络中引起了更大的问题—网络资源。很明显,对于电话公司而言,这是种很不经济的情况。他们发现在当前的公用网络结构中无法增强网络性能、无法提供附加的其他服务。罪魁祸首被公认为是缺少语音和数据的集成,以及在“最后一里”中的模拟线路的低带宽。


如何解决这个问题呢?这是个很困难的问题,而且代价相当昂贵。从本世纪80年代中期以来,人们普遍认为应该用通用的、无处不在的基于包的网络节点和链路来代替TDM公用网络,这种网络的带宽可以按照用户的要求在传输的整个过程中以动态的方式管理。这个承诺的一部分看来已经由ATM技术实现。ATM技术现在仍然是修补网络使之实现应用合成的关键。但是当ATM技术人员花了好多年开发了正确而又广泛的、支持公用网络新时代的标准时,因特网却面临着爆炸性的增长,也带来集成和合成服务到底是什么样子的概念,前提是只要我们可以合并各种技术和得到假定的足够的带宽。因特网网际协议—我们最钟爱的IP协议,现在是所有网络协议之首。虚拟地提高到该协议的层次,所有的应用看起来都可能成为新的合成网络的一部分。首当其冲的是语音电话和数据应用。尽管如此,语音电话呼叫和要求带宽管理的数据应用的简单合成也被证明不是个轻松的任务。不同的需求经常发生冲突,合成网络的早期的专有实现最终都必须在公用网络中变成互相可操作的,这样才能赢得客户的广泛接受。与此同时,每个供应商都试图在市场份额上获得飞跃。这些问题是所有问题的核心,解决这些问题的努力也一直在进行着。 


即使是在今天的公用网络机制中,双方在模拟电话上的简单呼叫也不简单。第一点,也是最重要的一点是,PSTN中实际上只有两个“网络云”:一个传送信号,另一个传送语音带宽数据。在当前的网络结构中合并服务的部分问题在于本地访问基本服务的信号是基于硬件的,主要为语音电话定制,同时也对ISDN线路上的点到点的语音信号作了一些基本的考虑,这些考虑主要是针对那些可以支付得起费用的人。这是个严重的限制,也是实施变化的很好的原因。第二点是将交互式多媒体应用,如远程教学,带入家庭存在困难。信号传输和带宽不够都是严重的限制。按需的娱乐和网络购物的方便性也是网络现代化的驱动力量。在新的电话服务中,不很昂贵的全彩色、全动感的带有白板能力的电视会议也将为期不远。所有这些新性能带来的副作用可能使我们花费很多,但是它们的确为我们带来巨大的好处,那就是使我们可以用一种以前从来没有经历过的方式来方便地交换信息。




公用网络中,什么东西以什么样的方式在改变


如果假定可以解决接入的带宽问题,那么其他技术问题将引发成堆的问题。从住宅客户要求出发,为了完成服务合并,信令和介质传输必须全部重新配置。本地的模拟信号循环将成为过去,语音将以端到端的数字信号存在。


新的结构上的包技术正在IP协议的基础上制定,不同连接层上将提供新的连通性,如ATM。简单的信令技术还没有确定,但是三个先驱,MGCP、SIP和H.323,在所有新的设备和服务设计中都占有一席之地。这意味着我们一开始就在设备的包层次上带有信号的不兼容性,但是,如果不发信号,就不可能建立呼叫。这种潜在的不可行性可以通过伴随即将到来的新的电话服务的自然惯性而避免。既然提供基于包的电话服务要如此大的开销,服务供应商所做的第一步就是分“片”提供。最近几年的工作正在研究第一片,它可以提供直到中央局的集成服务。现在这是个重新配置的5类系统,它提供了TDM网络中的大多数普通的电话特性,但是它是基于IP技术实现的。这一步完成以后,从客户可感知的电话服务质量的观点,我们将更清楚我们的处境;现在供应商开始在基本电话服务中加入新的特性的前景已经清晰起来。


介质传输是基于包的,无论用于建立呼叫的协议是什么,VoIP服务选择的方法都是实时协议(Real Time Protocol,RTP),这一点似乎不存在争议。但是这儿将出现一个PSTN中不存在的令人头疼的问题。在我们为更有效地合并服务和管理带宽努力的同时,压缩语音电话服务将开始影响住宅电话服务。这在市场上存在着相当大的分歧,因为传输语音质量的客观测量只是在最近才变得可行。实际上,语音质量的测量也是本书的一个主要论题。这个问题不可避免地把我们带到服务质量(Quality of Service,QoS)分类的下一步讨论中。在今后的几年中,合成网络的QoS领域内还有很多工作要做,只有时间和实际数据可以告诉我们,有关新的公用网络的设计的开销和努力是否正确。 


一旦我们离开5类域开始进入主干网络,真正的问题就出现了。在PSTN中,所有的载波都通过SS7发送信号和PCM语音编码,它们是相互可操作的。普通而又简单。但是,用一个未经测试的、不一致的包网络代替核心PSTN,可能远远超过了承诺的范畴,服务供应商和设备供应商都看到了这一点。因此,PSTN还有望存在一段时间,新的基于包的5类域将成为语音电话到PSTN上的网关。这意味着基于包到SS7的信号互连和介质编码转换将成为必要。它的代价可能是语音质量的降低,但是将带来的直接好处是在完全不同的基于包的VoIP技术和TDM网络之间的相互可操作性。毕竟,如果我们不能使用我们一直都可以用的电话呼叫,新的技术又有什么好处呢?
即使PSTN夹杂在中间的服务集成也仍然是强有力的。新的5类域也将成为数据网络和因特网间的网关。它在其中作为过滤器和集成器。任何一个都不是最终的解决方案,但是在传输合成服务的启动阶段还是很有意义的。要注意的第一件事情是ISP拨号图中的变化,它带来了快速的无处不在的服务访问、服务的高度可移动性以及更多特性集的更多的固定和移动电话。


所有这一切意味着,新的基于包的5类域将把所有的东西都当成数据—包数据,但是有一些数据包之间会更为相似。实际上,主干网中PSTN的不断出现减轻了合成一个单一网络潜在的问题,因为在以后的某天我们将无须决定如何处理数据通过简单路由点时的不同优先级。正如我们在新网络中使用服务的出现模式中所得知的那样,在将PSTN的一部分放到单一的基于IP的主干网络时作出的所有决策,在那时候都将更有理由。


还有几个重要问题与网络现代化进程相关。第一个问题是处理安全性。PSTN由于与外部世界完全隔开,所以非常安全。对基于IP的网络却不能这么说,但是过去几年的教训已经提高了对安全领域的关心程度;像IPsec这样的协议也有望起到重要作用。即便如此,新的网络还是可能在相同的链路商发送信号和传输介质,这必然会受到那些合成PSTN的人的怀疑。


第二个潜在的问题是对在目前的TDM网络中正常工作的应用的持续支持。最大的应用就是传真了,传真占了公司话费的30%~40%,对电话公司而言也是个较大的收入来源。商业用户的需要是降低发送传真的费用,同时至少保持目前的性能和用户使用的整体感受。这种商业需求已经导致了多种方法的出现,它们都可以按照可变的需求和预算将基于IP的传真带给用户。


另一个潜在的问题是有很多保护POTS服务和设备的联邦法律。很难相信这些法律不会改变,但是在目前,要预知客户和服务供应商会在多大程度上受到影响还为时尚早。


最后,不要忘记国际电话网络,我们要使用它们接入PSTN。全球的网络都变成基于包的网络还需要一段时间,这将要求在新的网络现代化的过程中保持国际间相互合作。


我们将把电话服务作为合成网络中的哪个部分,而不管使用什么样的载波实现我们的目标。这个短期的方案图由基于包网络和PSTN相连组成,提供无处不在的电话服务。相同载波的用户之间的呼叫可以通过它们自己的PSTN部分建立路由,也可以不经过PSTN,直接由包结构实现。长期的观点和需要是一个包网络以一种兼容的方式连接所有的载波和服务,但是基于目前的应用现状,要实现这一点还要好多年。但是总有一天,它将成为现实。




新的公用网络中存在的技术问题


为了使VoIP成为合成网络的先驱,新的服务必须保留用户双方进行简单的POTS电话呼叫的特性。但是,业界一直为这个问题争论不休,即任何一种基于包的技术都将在语音流中引入延时,在用户通话过程中经常可以感受到,其结果将导致用户的不满。公用网络中的VoIP技术必须克服这个潜在的问题,并把延时降低到不可觉察的级别。另一个因素是VoIP语音质量传输和最新的语音压缩技术的结合。如果存在潜在的延时问题,同时又有语音压缩带来的不可避免的语音质量降低,那么结果也将是用户的感受变坏。现在可以用客观的方式测量语音质量,其间的差异也可以用更多的来自实践经验的可用数据、信息和知识来弥补。


最后,电话服务还要根据服务供应商的网络鲁棒程度来测量。服务可用性也是FCC规定的参数之一。PSTN是个“五个九”的网络,指定的可用性是99.999%,事实上可能更多。如果降到“四个九”或者“三个九”,那么将意味着消费者的频繁的抱怨和不满意。这就是为什么在革新PSTN之前,要慢慢进入核心网络,同时保证所有的质量特性。




PSTN到VOIP 企业语音转换全攻略


从某种意义上而言,企业很可能是第一个网络电话(Voice over IP)以及其他一些基于IP网络相关服务的受益者。在VOIP到来之前,企业一般是通过基于电路交换的PSTN网络来进行实时语音通话和传真业务,而数据通信业务则是基于拨号上网,X.25,帧中继,ATM,IP等等。在企业中,IEEE标准制定的802.3协议或者基于以太网的局域网都是应用极其普遍的数据通信网络。


在此,我们将小企业,中型企业,还有大企业分别定义如下:


小型的家庭式办公室(SOHO)通常支持少量的电话线路(不超过8个)和一个小型的局域网(不超过16个端口)。而小型企业通常支持少量的电话线路(不超过16个)和一个小型的局域网(不超过32个端口)。他们一般只限于部署1个到4个地理位置。


中型企业通常需要好几十个电话线路,一个路由器,每个地方都部署多个基于局域网的以太网交换(中型局域网包括32到64个端口)。很显然,他们在多个地理位置上开设了若干办公室。


大型国有企业通常需要几十甚至上百的电话线路,每个地方都要部署多个基于交换机和路由器的以太局域网。很显然,他们在多个地理位置上开设了好几十个办公室。


在企业中引入VOIP,不仅使得多个不同的网络可以融合到同一个物理基础设施上并且只需要执行一个协议(即IP协议),而且还使得网络得以开放,从而可以向企业员工和客户提供各种新兴的基于IP的业务与应用。这一系列新的业务包括基于IP的传真,多方会议,统一标准的消息接发,find-me/follow-me业务,基于Web的呼叫/接触中心,电子商务,客户支持业务,支持虚拟或远程工作者等等。


尽管操作维护上和基础设施部署上的成本节省是企业引入VOIP服务的主要动机,但是还有其他一些因素使得企业坚定了这个选择。这些因素包括:


A、在整个企业使用统一的业务和网络管理平台,即全IP化。


B、使得业务创建和维护更具灵活性,例如,使用一个Web工作站接口来进行管理维护。


C、使得企业内部的终端设备的添加,转移,改变之类的管理更加简单。


而且一般来说,对于中型或大型企业而言,对VOIP的投资成本通常在数月内就可以收回。


企业的IP网络或者企业内部网必须得以合理的设计,从而符合甚至超过分组包传输时延、抖动、丢包率等服务质量的限制。这样就可以保证企业内部任何地方VOIP服务的质量、有效性和可靠性都合符要求。


本文主要讨论了一些在企业内部部署VOIP所必须的网络终端、接口和网络元素。而且文中还介绍了一些网络场景,可以帮助企业完成从以前传统的面向企业员工的、基于电路交换的电话业务(例如centrex,PBX等),向同时面向客户(例如电子商务应用)和企业内部员工的、基于IP和VOIP的先进的融合网络和业务的转换。


1、基于IP的终端设备:PC机和会议电话系统


IP电话是基于个人计算机、智能数据处理器、以及实时操作网络软件/系统的类似简易老式电话业务或综合业务数字网络的电话设备。这种设备可以用于处理来自任何通信应用业务提供商(CASP)的实时语音通信,并且在基于IP的分组通信网络上传输实时话音信号。虽然第一代的IP电话只能支持基于G.711的语音编码,并且采用私有的或基于H.323/MGCP的信令和呼叫控制,但是目前的IP电话能够支持基于G.729、G.726、G.723的语音编码选择,更主要的还能使用开放的SIP协议进行呼叫控制和信令控制。现在许多IP电话已经建立在多口以太网集线器上以支持局域网的无缝连通,而且还能够通过连接到以太网局域网集线器/交换器上,来使用相同的以太网电缆(1个级别5个电缆)以获得电力支持。现在IP电话和SIP电话可用的特征和功能包括呼叫转移、电子邮件、即时通信(IM)、离线消息、一键通(Click-to-Dial)等等,这表明IP和SIP电话能够支持许多在商业通信环境中经常需要用到的高效的特征和功能。而且,自从客户或终端可以通过IP的动态主机配置协议(DHCP)进行动态注册和地址分配,IP电话就变得更加便利了,也使得客户或终端的添加、移动和改变都非常简单。最后,由于IP电话也是使用相同的数据网络基础设施和相同的技术,使得企业网络的进化和管理更加无缝化,成本更加低廉。


近来一些新近开发的IP电话已经能够具备了支持多方会议的特征和功能,而这些功能正是过去在昂贵的传统专用分组交换机(PBX)中,或者某些只被购买来作为核心电话系统的部分的电话中才能够得到的。这些IP电话可以提供全双工的音视频功能和诸如语音邮件,姓名簿索引,呼叫加入、放弃和转移,多方会议的交互连接等服务。此外,这些IP会议电话系统可以通过以太网的接入,作为IP-PBX的客户端接入TDM和IP融合的企业网络。


现在不少大的网络公司,包括思科,Pingtel,Polycom,西门子,已经开始带着他们研制的终端和会议电话向高端住宅区和企业的大市场进军。


2 、IP-PBX, IP CENTREX 和 基于IP的PBX专用线路


IP-PBXs属于PBX设备,支持以下设备和功能:


a.多样化的IP电话和/或VOIP电话功能特征;
b.呼叫处理/控制和维护传统的电路交换PBX;
c.一个或多个以下类型的电话:模拟电话,数字电话,ISDN-BRI电话,IP电话等等。
d.一个或多个T1/E1-CAS/PRI链路和数字用户线路(DSL)接入公共交换电话网络(PSTN)和IP中继线本地和/或广域数据/分组网络。IP中继线可用于一个企业的IP专用电话交换机的内部连接,在一个基于IP的企业虚拟专用网络(VPN)之上的不同地理位置之间的连接。


IP-PBX的应用不仅降低了维护和部署成本,增强了企业通信的能力,而且还大大简化了软件升级以及综合的语音和数据的基础设施的管理。另外,IP专用线路或IP中继线还能够用IP-PBX在不同地理位置的内部互连。IP专用线路的使用可以带来两大好处:一是使得公司总部的高级呼叫控制能力对于远程部门的员工同样可用;二是允许员工在不同的地理位置上进行IP电话会议,却避免了长途电话的开销。


IP-PBXs 能够同等地提供传统模拟中央交换机(analog Centrex)和综合业务数字网络中央交换机(ISDN Centrex)所能提供的服务。在模拟中央交换机和综合业务数字网络中央交换机中,负责呼叫控制功能的组件是装置在位于中心办公室的CLASS-5交换机上,例如,从用户角度来看,每23(T1-PRI)或24(T1-CAS)个电话终端就需要一条专用线路T1。这种系统不仅维护成本高,还可能仅能提供一个功能有限的或私有的中央交换机组件。


相反,在传统的PBX或新兴的IP-PBX中,这些功能模块通常配置在用户侧的网络元素上,而且通过一条或多条专用线路T1(传统PBX)或DSL(新兴PBX)连接到中心办公室,用PSTN的连接。图1说明了PBX和Centrex服务的区别。而且,DSL还能在相同的链路支持语音和数据的传输,而且维护链路的成本也远远小于维护T1所需的代价。另外,由于呼叫控制能够在本地装载,而IP-PBX能够支持Internet连接,因此每23(T1-PRI)或24(T1-CAS)个电话终端就不再需要一条专用线路T1的支持了


随着VOIP的出现,和当前基于IP网络的无处不在的可用性,模拟中央交换机和综合业务数字网络中央交换机正逐渐向基于IP的中央交换机(IP Centrex)过渡。为了提供基于IP的中央交换机服务,运营商需要能够为用户提供高质量(能够有QoS保证)的宽带(基于DSL,T1,以太网等)IP链路,而不是只提供昂贵的TI专用线路来支持语音传输。这样,企业级用户能够使用宽带IP链路同时承载话音和数据业务,以向员工提供更为丰富和多样的应用。为了支持传统电话和传真机,还需要在用户侧部署IP-PSTN网关,这种网关能够提供从传统的时分复用(TDM)域向IP域的信令和媒体的转换。这种转换有效利用了服务提供商的IP网络的一些诸如IP-PSTN GW,VOIP CC软交换等等的网络元素,从而实现了基于全IP的互通和融合。IP PBX和IP中央交换机还提供了一套模拟中央交换机和综合业务数字网络中央交换机服务的扩展集。


当IP-PBX一旦投入使用,企业就可以在特定数据网络基础设备部署IP网络元件或设备,这样可以减少布线和管理的复杂度,还能够降低物理覆盖区的需求。而且,IP-PBX不仅能够支持IP电话的灵活性和有效性,还能支持局域网和广域网上的点对点VOIP服务。另外,IP域的网络元件使用开放的基于Web网站的接口标准来维护呼叫控制,业务的提供和管理。因此,它能够相对更快更简单的管理软件升级,以及为企业推出新的业务组件(例如统一标准的消息接发,find-me/follow-me业务等)。


传统PBX厂商和网络路由器制造商都正致力于IP-PBX和其他相关组件网关以及应用业务的开发和市场拓展。这些企业包括思科、Avaya、北电网络、西门子、NEC、Mitel等等。目前,这些商用的IP-PBX除了能够充分地支持传统基于PBX电路交换可支持的数十个呼叫处理功能之外,还能够支持许多新兴的业务与应用。


显示了从传统的中央交换机业务向基于IP的中央交换机业务转换的一个具有可行性的解决方案体系结构,这个方案尽量使得用户侧客户端对于基础设施的投资最小化,而运营商对此的投资回报则会相对较多(Internet服务提供商,ISP相对较少,而电信运营商更多)。更具体来讲,部署成本取决于设备接口和服务的需求、部署的范围、备的使用年限、现有可用的IP网络基础设施等等,因此每个具体的解决方案需要单独地核算成本。


IP中央交换机的用户不仅能够在不需要增加运营商的专用线路的前提下扩容,还能只在本地的IP网(LAN或者Intranet)添加服务器就能实现各种新的基于IP的业务与应用。许多现存的电路交换制造厂商正在致力于开发线路卡(line card)或网关设备,其中线路卡可以与现有设备完整结合以支持必需的接口功能,而网关设备可以支持IP网络、公共交换电话网络(PSTN)以及服务传输组件之间的互通。


示范了一个现存的基于电路交换的PBX增加了一个嵌入式的VOIP呼叫控制器和通向公共交换电话网络(PSTN)的网关线路卡之后,如何向基于IP的PBX转换的体系结构。另一种实现转换可选取的方案是使用一个分离的物理设备,这个设备具有完整的VOIP网关和一个分离的呼叫控制或呼叫代理功能。这两种实现方案的选取则取决于系统机构。


尽管现今已经有很多用于基于IP终端控制的协议存在,例如H.32.,SIP,MGCP等等,但是IETF的SIP正在凭借它的开放性与简单性,逐渐赢得了来自标准化组织和企业厂商的共同支持。而对于呼叫管理或呼叫服务器或呼叫控制器的VOIP网关设备来说,MGCP和Megaco/H.248协议正在成为最无争议的赢家。


3、IP-VPN和远程工作


虚拟专用网络(VPN)是指利用电信网络链路或者共享Internet中继线来提供点对点的专用逻辑信道,以进行数据或话音通信。IP的灵活性和普遍性已经激发了许多因特网和电信网设备制造商来投入开发基于IP的虚拟专用网络(IP-VPN)设备,用以支持在宽带IP链路上传输融合的实时通信和数据业务。如图4所示,宽带IP链路可以是一个数字用户线路,一个附装在有线电视上的线缆调制解调器(CATV),一个无线的或以太网本地环路,或异步传输模式(ATM)之上的IP,或光纤激光器之上的同步光网络(SONET)等等。


许多大公司都已经在内部建立起了他们的IP-VPN,从而方便他们的员工、呼叫中心代理和差旅人员的使用。基于IP-VPN的VOIP业务主要益处是能够方便远程工作者(在家或者其他地方)使用和公司中心部署的VOIP设施和服务。


商业级的SOHO IP-VPN设备和IP-PBX能够提供从IP网络到PSTN网络的平滑VOIP呼叫,从而使得用户能够拥有可靠服务质量的业务。同样地,本地和应急呼叫能够通过本地模拟或者BRI线路被路由到PSTN网络。这使得企业能够实现向其他端点(PSTN电话)或者公众服务接入点(PSAP)传送低成本、高效的呼叫。


和所有的基于IP的业务一样,通过基于Internet逻辑私有网络管道提供IP-VPN和相关业务的主要问题有两个方面:
a)安全性
b)服务质量保证


为了满足安全性的需求,我们需要为终端提供完善的鉴权、加密解密、隧道和防火墙机制。同样地,为了满足服务质量的需求,我们有必要对通过网络的IP分组进行接入控制和带宽分配。因此,任何实际可行的IP-VPN设备都必须同时通过嵌入的软硬件支持安全性和服务质量。


目前,国际互联网工程任务组(IETF)和国际电信联盟(ITU)已经制定了系列的标准和草案来实现基于IP的安全性和服务质量控制。例如:


a)基于PKI (Public Key Infrastructure)的数字认证,用户鉴权、授权和计费的Diameter和Radius协议等都可以用于用户和终端的鉴权。 


b)IETF的IPSec采用了基于多路数字加密标准(DES,三重DES比较常用)的消息加密机制,通常提供128位键字(key)。


c)基于包头压缩和加密的点到点隧道协议(PPTP),二层隧道协议(L2TP)等提供信息隧道技术。


d)基于TCP/UDP端口、IP地址、协议类型、业务、接口等的分组包过滤机制、有状态的分组包检测、服务登录、网络地址转换(NAT)等机制可以被用作构建防火墙服务。


为了支持服务质量保证,IETF的区分服务(Diff Serv)、综合服务(IntServ)、以及结合二者优点的资源预留协议(RSVP),多协议标记交换(MPLS)已经趋于成熟。


4、基于WEB的呼叫中心


基于Web的呼叫中心不仅实现了商用和运营级的VOIP服务,而且继承了IP电话的灵活性等天生优势。传统的基于电路交换的PBX和自动呼叫分发(ACD)的呼叫中心系统能够通过添置VOIP网关和相应软件来升级为支持VOIP和基于Web的管理控制。因此,需要传统PBX和ACD设备场上,例如Avaya、北电网络、NEC等已经在市场上投放了这类基于Web的呼叫中心相关的产品设备。


在呼叫中心支持IP电话和VOIP业务使得添加、移动和改变工作站,以及远程呼叫代理员接入变得简单可行。此外,通过使用ANI/DNIS和基于IP网络的用户信息实时检索,呼叫中心代理员能够低成本、个性化地和客户进行交流。特别是对于在不同时区和地理位置的部署多个呼叫中心站点的情况,通过IP进行互连互通,能够实现高效低成本的管理和维护。此外,由于IP电话支持各种开发的应用程序接口(API),例如智能网络Java API(JAIN)、Paraly/OSA、TAPI/JTAPI,因此许多被电子商务应用所需要的销售自动化、库存管理、故障记录单和计费软件包等可以被低成本地开发,同时还将提供用户资源管理(CRM)等配套设施。而为了保证电子交易等事务的私有性和安全性,在上一节所讨论的鉴权、加密和防火墙机制将能派上用场。


基于Web的呼叫控制和ACD管理同时还能够平滑地实现智能控制、路由和任何位置的智能呼叫管理,无论是在企业内部还是在IP-VPN远程。这些特性实现了基于全IP的业务融合-话音、数据/电子邮件、传真等等,并且都统一到多媒体终端或者PC机上。因此,Web呼叫的引入对于企业而言使得他们更加容易开发和发布各种新的基于IP的业务与应用。这些业务包括基于Web的内部协作(呼叫中心代理员之间)和外部协作(呼叫中心代理员和客户之间)、基于浏览器的网络和业务管理、聊天和即时消息、基于Web的点击拨号(Click-To-Dial)等等。


基于Web的呼叫中心还可以被用来构建虚拟呼叫中心,以支持更为高级的呼叫控制和业务交付。这样的呼叫中心不仅可以在地理位置上跨越全球不同的时区,而且还可以低成本地实现不间断客户服务(24小时/天、365天/年)。例如,美国东部时间(EST)临晨1:25到达波士顿呼叫中心的呼叫可以通过协同的IP-VPN被路由到北京的呼叫中心,当时正是下午13:25。 同时,还可以统一地对于全球呼叫中心代理员进行培训,使得他们对于某方面的业务有所专注,这样客户到达的呼叫可以按照类别被路由到合适的代理员处。
 
ISDN
 
 目录·用户和产业预测
·结构
·参考点
·物理特性
·逻辑特性
·发展历程
·相关条目






ISDN 电话




综合业务数字网(Integrated Services Digital Network,ISDN)是一个数字电话网络国际标准,是一种典型的电路交换网络系统。它通过普通的铜缆以更高的速率和质量传输语音和数据。ISDN是欧洲普及的电话网络形式。GSM移动电话标准也可以基于ISDN传输数据。
因为ISDN是全部数字化的电路,所以它能够提供稳定的数据服务和连接速度,不像模拟线路那样对干扰比较明显。在数字线路上更容易开展更多的模拟线路无法或者比较困难保证质量的数字信息业务。例如除了基本的打电话功能之外,还能提供视频、图像与数据服务。ISDN需要一条全数字化的网络用来承载数字信号(只有0和1这两种状态),与普通模拟电话最大的区别就在这里。
另外, ISDN也特指使用这项技术建立保持和断开电路交换的协议组 或是 isosorbide dinitrate二硝酸异山梨酯的缩写。








用户和产业预测


对于ISDN主要由2种观点。最普遍的观点是用户希望有一个从家庭连接到电话和数据网络的好于普通模拟调制解调器性能的数字连接。典型的最终用户的互联网连接就是基于这种观点的,而对各种调制解调器的比较以及运营商的产品以及价目(性能,价格)等等都是从这点出发的。大部分这方面的讨论都是基于这种观点,但是实际上作为数据连接服务,ISDN事实上已经被DSL技术淘汰。
然而还有另外一种观点:对于电信产业,ISDN还没有完全被判死刑。一个电话网可以被看作一个不同交换系统之间的有线连接集合。 它也作为智能网技术通过端到端的电路交换数字服务为公共交换电话网 (PSTN)提供更多得新服务。
ISDN自始至终没有在美国的电话网络上得到广泛应用,现在已经是一种过时的技术。不过在录音工作室它还有一些用处,特别是配音演员和导演制片不在一个地方的时候,ISDN在这时就凸显了失时非over-the-Internet服务的优势,其逼真的语言质量堪比POTS服务。




结构


ISDN有2种信道 B和D:


B信道 用于数据和语音信息
D信道 用于信号和控制 (也能用于数据).


B代表 承载, D代表Delta.
ISDN有2种访问方式:


基本速率接口(BRI)由2个B信道,每个带宽64kbps和一个带宽16kbps的D信道组成。三个信道设计成2B+D。
主速率接口(PRI) - 由很多的B信道和一个带宽64Kbps的D信道组成,B信道的数量取决于不同的国家:


北美和日本: 23B+1D, 总位速率1.544 Mbit/s (T1)
欧洲,澳大利亚:30B+D,总位速率2.048 Mbit/s (E1)






语音呼叫通过数据通道(B)传送,控制信号通道(D)用来设置和管理连接。呼叫建立的时候,一个64K的同步信道被建立和占用,制导呼叫结束。每一个B通道都可以建立一个独立的语音连接。多个B通道可以通过复用合并成一个高带宽的单一数据信道。
D信道也可以用于发送和接受X.25数据包,接入X.25报文网络。(实际上,很少广泛使用)。




参考点


一系列 参考点 在ISDN 国际标准中被定义用来在电话交换局和用户终端设备之间提供特定结点。


R接口 - 定义非ISDN设备和终端适配器 (TA) 之间的传输转换
S接口 - 定义ISDN设备和 网络终端类型2 (NT 2)设备之间的接口
T接口 - 定义NT-2 和NT-1设备1
U接口 - 定义NT-1和电话交换机之间的节点2


Image:Isdn-referenzpunkte.png
1大多数NT-1设备都包含NT-2设备的功能, 参考点S和T一般合并为S/T参考点
2在北美,NT-1设备属于用户自备设备,用户必须自己来维护,因此电话公司提供给用户U接口。在其他国家,NT-1设备由电信公司维护,他们提供给客户S/T接口。






物理特性




供电


正常供电








接通市电的NTBA






紧急供电
为了保证在市电事故(停电)时也能拨通例如报警或者火警电话,ISDN电话还有一个独立的位于本地交换中心的供电系统(紧急电力供应)。在发生电力故障时能够提供最大400mW的功率。




逻辑特性




脉冲
德国的ISDN起源于1TR6,从1991年开始形成了一个统一的欧洲公用标准(E-DSS-1). 在欧洲以外也存在着其他的实现方式。
美国的ISDN叫NI-1 (美国国家ISDN 阶段1) 和 NI-2. 相对应于DSS1标准,该标准不存在自己的信号通道(D-通道),取而代之的是信号数据通过用户通道(B-通道)进行传输,相应的容量也下降为56kbit/s.
日本和香港的ISDN系统名字是INS-Net 64,澳大利亚叫TPH 1962。


语音转换
语音数据被ISDN系统的8K赫兹数字化 (PCM)编码器调制, 利用对数特性曲线(ITU-T-标准 G.711, μ-law/a-Law) 信号由12压缩为8,以考虑到人类特定的行为特征. 占用的带宽是300到3400赫兹。


数据转换
B信道 用于控制和同步, 达到运用不同传输协议的目的.为了达到传输率加倍的效果,连接基本接口的这两条B-通道也gebündelt. 如果最终能够实现终端设备同步,那么该系统就可以称为成功。(例如视频会议系统).
利用特殊的路由器可以把全部30个可用信道合并成一个逻辑接口,这个接口可以提供2.048 kb的带宽。这项技术主要应用于企业众多的计算机接入互联网。


ISDN寻址
ISDN-地址是由ITU-T-策略E.164确定的。该ISDN地址由ISDN-呼号和子地址组成。例如,ISDN呼号是由一个参与者连接一个基础接口。子地址最大32个字符长度,提供例如到局域网中的主机地址(必须通过网关与ISDN网络连接)。该子地址对于ISDN网络而言是透明的,只有使用中的参与者能够识别。


ISDN呼叫举例
下面的例子是一个窄带(PRI)ISDN呼叫Q.921/LAPD和Q.931/混合网络消息(例如详细显示D信道的变化)。这个呼叫显示被跟踪的交换机呼叫另一个交换机的过程,最终的 LEC中止通话。
第一行的格式是<时间><D通道><发送/接收><LAPD/ISDN><ID>。如果消息是ISDN层消息,解码操作就会试着显示信元内容。所有ISDN消息都用交换机看来发起呼叫的一方试用的ID标记(本机/远端)。Following this optional decoding is a dump of the bytes of the message in <offset> <hex> ... <hex> <ascii> ... <ascii>format.


RR表示开始通话前保持链路活动,然后看到的SETUP表示呼叫开始每一个消息对方都要应答一个 RR。




10:49:47.33 21/1/24 R RR
0000 02 01 01 a5 ....


10:49:47.34 21/1/24 T RR
0000 02 01 01 b9 ....


10:50:17.57 21/1/24 R RR
0000 02 01 01 a5 ....


10:50:17.58 21/1/24 T RR
0000 02 01 01 b9 ....


10:50:24.37 21/1/24 T SETUP
Call Reference : 000062-local
Bearer Capability : CCITT, Speech, Circuit mode, 64 kbit/s 
Channel ID : Implicit Interface ID implies current span, 21/1/5, Exclusive
Calling Party Number : 8018023000 National number User-provided, not screened Presentation allowed
Called Party Number : 3739120 Type: SUBSCRB
0000 00 01 a4 b8 08 02 00 3e 05 04 03 80 90 a2 18 03 .......>........
0010 a9 83 85 6c 0c 21 80 38 30 31 38 30 32 33 30 30 ...l.!.801802300
0020 30 70 08 c1 33 37 33 39 31 32 30 0p..3739120


10:50:24.37 21/1/24 R RR
0000 00 01 01 a6 ....


10:50:24.77 21/1/24 R CALL PROCEEDING
Call Reference : 000062-local
Channel ID : Implicit Interface ID implies current span, 21/1/5, Exclusive
0000 02 01 b8 a6 08 02 80 3e 02 18 03 a9 83 85 .......>......


10:50:24.77 21/1/24 T RR
0000 02 01 01 ba ....


10:50:25.02 21/1/24 R ALERTING
Call Reference : 000062-local
Progress Indicator : CCITT, Public network serving local user, In-band information or an appropriate pattern is now available
0000 02 01 ba a6 08 02 80 3e 01 1e 02 82 88 .......>.....


10:50:25.02 21/1/24 T RR
0000 02 01 01 bc ....


10:50:28.43 21/1/24 R CONNECT
Call Reference : 000062-local
0000 02 01 bc a6 08 02 80 3e 07 .......>.


10:50:28.43 21/1/24 T RR
0000 02 01 01 be ....


10:50:28.43 21/1/24 T CONNECT_ACK
Call Reference : 000062-local
0000 00 01 a6 be 08 02 00 3e 0f .......>.


10:50:28.44 21/1/24 R RR
0000 00 01 01 a8 ....


10:50:35.69 21/1/24 T DISCONNECT
Call Reference : 000062-local
Cause : 16, Normal call clearing.
0000 00 01 a8 be 08 02 00 3e 45 08 02 8a 90 .......>E....


10:50:35.70 21/1/24 R RR
0000 00 01 01 aa ....


10:50:36.98 21/1/24 R RELEASE
Call Reference : 000062-local
0000 02 01 be aa 08 02 80 3e 4d .......>M


10:50:36.98 21/1/24 T RR
0000 02 01 01 c0 ....


10:50:36.99 21/1/24 T RELEASE COMPLETE
Call Reference : 000062-local
0000 00 01 aa c0 08 02 00 3e 5a .......>Z


10:50:36.00 21/1/24 R RR
0000 00 01 01 ac ....


10:51:06.10 21/1/24 R RR
0000 02 01 01 ad ....


10:51:06.10 21/1/24 T RR
0000 02 01 01 c1 ....


10:51:36.37 21/






发展历程




世界
1970年代产生了电话网的数字技术取代机械交换。这项技术给用户提供了更好的功能和更佳的通话质量。 标准化组织国际电报电话咨询委员会 (CCITT, 今国际电信联盟 (ITU))1980年为数字电话网制定了以“ISDN”命名的技术规范。


欧洲
1980年代中期,befürchteten zahlreiche Strategen in der europ?ischen Elektroindustrie und der EG-Kommission, dass Europa auf dem Gebiet der Telekommunikation gegenüber USA und Japan deutlich ins Hintertreffen geraten würde, wenn es nicht gelingen würde, die staatsmonopolistischen Anachronismen abzuschaffen und den Wettbewerb nationaler Eitelkeiten zu beenden.
Um dieses "Horrorszenario" zu verhindern, sollten einheitliche Normen und gemeinsame M?rkte geschaffen werden. 1988年欧洲电信标准组织(ETSI)EG-Kommission起草一个标准, 这个标准用于建立一个通用的数字电话网络。1989年4月6日来自20个欧洲国家的26个电信运营商接收了 Euro-ISDN标准,这一标准统一作为各国的国家ISDN系统,并对相关技术进行优化。199312月产生了Euro-ISDN摘要,这就是《欧洲ISDN Implementation谅解备忘录》基础.


德国
德国邮政于1979决定将德国所有本地电话数字化。当时对这一技术的风险也有人提出警告。绿党的一些数据保护专家评论说,ISDN为完全捕获数据产生了“质的飞跃”,因为这一技术为捕获和保存所有连接数据提供了可能
到1994年5月份,所有必要的局端软件升级都已经完成,德国具备放线能力了。从1995年开始全部电话网完成数字化,ISDN线路遍布大街小巷。到1996年年仲,德国电信积极推广ISDN技术。新装的线路费用最多至300德国马克,另加电话的话大约到700德国马克。2003初有106万3千用户使用窄带ISDN(大约占总装机的1/3)另外还有12万2500线宽带ISDN用户。


奥地利
奥地利电话系统由邮政和电报部主持于1978年开始数字化。 Ab 1986 wurde die OES-Technik fl?chendeckend umgesetzt. 1992年2月维也纳本地网话务区"Dreihufeisengasse" 开始ISDN试用,到那年低已经安装200多线。到1999年奥地利完成数字化总共有24万七千247.000线。2002年这一数字达到43万8千。


瑞士,日本和法国
1988年瑞士建立第一个以“瑞士网络1号”命名的数字ISDN网络。1996年总计超过25万用户,到2004年电话终端超过90万线。
在日本1999年到[[2001年]间存在很多用户,但是现在大部分已经在ADSL引入后,大量减少。NTT作为主要的日本电话公司,现在还提供名为INS64和INS1500的ISDN业务。
在法国, 法兰西电信的ISDN业务名称位Numeris(基本速率) 。被称为RNIS的ISDN业务在法国还有一定市场。ADSL业务抢占了ISDN的数据和互联网访问业务,但是在郊区和乡下还有一定量的用户存在。


美国
美国1992年开始部署名字为NI-1的ISDN系统, 这个系统与DSS1有很大不同。后来又部署了改进的版本NI-2 。AT&T现在还有称为5ESS的ISDN系统。但是因为市场推广不力,价格上也没有多少优势,ISDN在美国基本上已经称为鸡肋。.


中国
中国电信产业发展很快,但是在ISDN大面积部署的时候,中国还没有引入此项技术。因此当在欧美国家ISDN很普遍的时候,中国才开始安装局端设备。而此时,ADSL技术已经成熟而且象市场推广了。
这样九十年代中期只有在北京,上海,广州等少数几个试点城市ISDN安装的比较多,其他城市只是小面积的使用。推就根本原因在于运营商需要投入巨额资金用于设备改造。当时中国电信提供的2B+D方案是窄带ISDN标准,只能提供128Kbps的速率。用户需要承担接近1.5倍普通电话的费用。而网上业务没有真正展开,用户需要的服务和内容都得不到支持。
ISDN不像ADSL那样语音与数据容易分离,因此用户必须使用全部数字化的设备,这就造成运营商和用户都要投资的状况。一方面运营商要不断满足飞速增长的网络连接需求,另一方面还有发展固定电话业务。ISDN不能灵活的适应中国需求多样化的市场,只能淡出市场角逐。而DSL高带宽,大容量和低廉的改造费用让运营商很快投入到DSL网络建设。




相关条目




DSS1 (ETSI "欧洲-ISDN", 其他非欧洲国家也使用)
NI-1 (美国国家ISDN第一阶段)
NI-2 (美国国家ISDN第二阶段)
INS-NET 64/1500 (日本国家/NTT载波特性协议)
DACS适用英国(不列颠电信只使用标准D信道信号为Pair gain




FTZ 1 TR 6 (前德国协议)
TS.013/TS.014 ( 前奥地利协议)
VN2/VN3/VN4 (前法国协议)


规范定义的ISDN物理层和部分链路层协议:


ISDN BRI: ITU-T I.430.
ISDN PRI: ITU-T I.431.






 
PDN
 
1. Packet Data Network -- 分组数据网
2. Private Data Network -- 专用数据网
3. Protocol Data Network -- 协议数据网
4. Public Data Network -- 公共数据网
5. Public switched Data Network -- 公共交换数据网


电脑术语:公用数据网(PDN) Public Data NetWorks(PDNs)


【解释】:  一个机构在公共区域建造跨越很广区域的网络时,它可以有三种选择:建造自己的专用网;使用现存的公共网络;或使用以上两者结合的网络。建立专用网是有点被误导的,它通常是指一个利用公共设施建立的网络,除非顾客提供所有的交换转换设备,并在不同的地点之间建立了租用线路。专用则更精确这一事实:这个机构可以全面利用这些线路,并且不与其它任何人共享这些线路。建立专用网的另外一条途径是使用微波安装或使用除了LEC之外的其它公司提供的城域网设施。许多公司为广域网使用公用数据网提供的服务,但却为连接局部设施建立专用网设施,例如在一个校园环境内建筑物之间布缆是比较容易的。


  公用数据网(PDN)是由局域或长途电信局提供的一种分组交换或电路交换服务,这些电信局包括MCI、US Sprint和AT&T,另外上述服务也可以由另外一些机构提供,这些机构首先为自己使用而建造了网络,然后又使得其它用户也可以使用这些网络。提供的分组交换服务通常包括X.25、帧中继、交换式多兆位数据服务(SMDS)或异步传送模式。电路交换服务包括拨号线、交换56线路和综合业务数字网络(ISDN)。


  分组交换和电路交换服务的提供商包括:


  US Sprint在它的全数字光纤网络上提供电路交换服务、X.25、帧中继、Internet协议(IP)、视频服务和ATM。


  AT&T提供一系列电路交换和分组交换服务。它的ACCUNET电路交换服务,例如交换56,多年来一直得到使用。AT&T还提供帧中继、分组交换服务和ATM。


  CompuServe信息服务在遍布美国的上百个地点提供对X.25和帧中继服务的访问点。


  GE信息服务提供分组交换和高速服务、瞬间异步和同步服务。


  Infonet服务公司提供国际服务的阵列。


  Tymenet全球网络公司有接近5,000个全球访问点。


  这些服务可以在租用线路(按月交费)或拨号线上获得。一个典型的PDN网络在PDN的交换设备之间形成了一种全球性连接。使用电路包括PDN自己的专用线路或从主要电信公司,如AT&T租用来的线路。


  如图P-19所示,对服务的访问是由在本地访问传输区域(LATA)内的本地电信局(LEC)提供的。在顾客地点和LEC交换设施之间通常需要安装一条线路。这条线路可以是一条拨号线路,也可以是一条专用数字线路。PDN服务提供商在称为访问点(POP)的位置连进本地电信局。POP是他们访问顾客线路的地方。LEC必须根据政府的指定提供POP设施。


  使用PDN可以减少成本,并减少为建造专用网所需的租用昂贵的长途专用数字线路的需求。PDN自己处理交换服务和网络的任何问题。它还可以以较低的价格保证较好的数据分发。


  相关条目:Carrier Services 电信服务;Circuit-Switching Services 电路交换服务,Packet Switching Networks 分组交换网络。
 
1. Digital Data Network -- 数字数据网


数字数据网(Digital Data Network)是利用数字信道传输数据信号的数据传输网,它的传输媒介有光缆、数字微波、卫星信道以及用户端可用的普通电缆和双绞线。利用数字信道传输数据信号与传统的模拟信道相比,具有传输质量高、速度快、带宽利用率高等一系列优点。DDN向用户提供的是半永久性的数字连接,沿途不进行复杂的软件处理,因此延时较短,避免了分组网中传输时延大且不固定的缺点;DDN采用交叉连接装置,可根据用户需要,在约定的时间内接通所需带宽的线路,信道容量的分配和接续在计算机控制下进行,具有极大的灵活性,使用户可以开通种类繁多的信息业务,传输任何合适的信息。


DDN以光缆为中继干线,其基本单位是节点(node),每个节点具备主控模块,中继模块,用户模块及其他功能块,支持速率为16kb/s,8kb/S等话音和高于2Mb/s的图像信号的传输。


一、概述 


计算机通信技术层出不穷,国民经济的飞速发展,金融、证券、海关、外贸等集团用户和租用数据专线的部门、单位大幅度增加,数据库及其检索业务也迅速发展,现代社会对电信业务的依赖性越来越强。数字数据网DDN(Digital Data Network)就是适合这些业务发展的一种传输网络。它是将数万、数十万条以光缆为主体的数字电路,通过数字电路管理设备,构成一个传输速率高、质量好,网络时延小,全透明、高流量的数据传输基础网络。 
什么是DDN?它是利用数字信道传输数据信号的数据传输网。它的主要作用是向用户提供永久性和半永久性连接的数字数据传输信道,既可用于计算机之间的通信,也可用于传送数字化传真,数字话音,数字图像信号或其它数字化信号。永久性连接的数字数据传输信道是指用户间建立固定连接,传输速率不变的独占带宽电路。半永久性连接的数字数据传输信道对用户来说是非交换性的。但用户可提出申请,由网络管理人员对其提出的传输速率、传输数据的目的地和传输路由进行修改。网络经营者向广大用户提供了灵活方便的数字电路出租业务,供各行业构成自己的专用网。 


二、DDN网络介绍 


DDN网络的结构 
DDN网是由数字传输电路和相应的数字交叉复用设备组成。其中,数字传输主要以光缆传输电路为主,数字交叉连接复用设备对数字电路进行半固定交叉连接和子速率的复用。 
DTE: 数据终端设备--接入DDN网的用户端设备可以是局域网,通过路由器连至对端,也可以是一般的异步终端或图像设备,以及传真机、电传机、电话机等。DTE和DTE之间是全透明传输。 
DSU: 数据业务单元--可以是调制解调器或基带传输设备,以及时分复用、语音/数字复用等设备。 
DTE和DSU主要功能是业务的接入和接出。 
NMC: 网管中心--可以方便地进行网络结构和业务的配置,实时地监视网络运行情况,进行网络信 
息、网络节点告警、线路利用情况等收集、统计报告。 
DDN网络层次示意图 
按照网络的基本功能DDN网又可分为核心层、接入层、用户接口层。 
核心层:以2M电路,构成骨干节点核心,执行网络业务的转接功能,包括帧中继业务的转接功能。 
接入层:为DDN各类业务提供子速率复用和交叉连接,帧中继业务用户接入和本地帧中继功能,以及压缩话音/G3传真用户入网。 
用户接口层:为用户入网提供适配和转接功能。如小容量时分复用设备等。 
DDN网特点 
(1)传输速率高: 在DDN网内的数字交叉连接复用设备能提供2Mbps或N×64Kbps(≤2M)速率的数字传输信道。 
(2)传输质量较高: 数字中继大量采用光纤传输系统,用户之间专有固定连接,网络时延小。 
(3)协议简单: 采用交叉连接技术和时分复用技术,由智能化程度较高的用户端设备来完成协议的转换,本身不受任何规程的约束,是全透明网,面向各类数据用户。 
(4)灵活的连接方式: 可以支持数据、语音、图像传输等多种业务,它不仅可以和用户终端设备进行连接,也可以和用户网络连接,为用户提供灵活的组网环境。 
(5)电路可靠性高: 采用路由迂回和备用方式,使电路安全可靠。 
(6)网络运行管理简便: 采用网管对网络业务进行调度监控,业务的迅速生成。 
中国公用数字数据网(CHINADDN)的网络现状 
中国公用数字数据骨干网(CHINADDN)于1994年正式开通,并已通达全国地市以上城市及部分经济发达县城。它是由中国电信经营的、向社会各界提供服务的公共信息平台。 
CHINADDN网络结构可分为国家级DDN、省级DDN、地市级DDN。国家级DDN网(各大区骨干核心)主要功能是建立省际业务之间的逻辑路由,提供长途DDN业务以及国际出口。省级DDN(各省)主要功能是建立本省内各市业务之间的逻辑路由,提供省内长途和出入省的DDN业务。地市级DDN(各级地方)主要是把各种低速率或高速率的用户复用起来进行业务的接入和接出,并建立彼此之间的逻辑路由。这样,把国内、国外用户通过DDN专线互相传递信息。各级网管中心负责用户数据的生成,网络的监控、调整,告警处理等维护工作。 


三、DDN网络的应用


DDN网络提供的业务 
由于DDN网是一个全透明网络,能提供多种业务来满足各类用户的需求。 
提供速率可在一定范围内(200bit/s—2Mbit/s)任选的信息量大实时性强的中高速数据通信业务。如局域网互连、大中型主机互连、计算机互联网业务提供者(ISP)等。 
h 为分组交换网、公用计算机互联网等提供中继电路。 
h 可提供点对点、一点对多点的业务适用于金融证券公司、科研教育系统、政府部门租用DDN专线组建自己的专用网。 
h 提供帧中继业务,扩大了DDN的业务范围。用户通过一条物理电路可同时配置多条虚连接。 
h 提供语音、G3传真、图像、智能用户电报等通信。 
h 提供虚拟专用网业务。大的集团用户可以租用多个方向、较多数量的电路,通过自己的网络管理工作站,进行自己管理,自己分配电路带宽资源,组成虚拟专用网。 
DDN网络在计算机联网中的应用 
DDN作为计算机数据通信联网传输的基础,提供点对点、一点对多点的大容量信息传送通道。如利用全国DDN网组成的海关、外贸系统网络。各省的海关、外贸中心首先通过省级DDN网,出长途中继,到达国家DDN网骨干核心节点。由国家网管中心按照各地所需通达的目的地分配路由,建立一个灵活的全国性海关外贸数据信息传输网络。并可通过国际出口局,与海外公司互通信息,足不出户就可进行外贸交易。 
此外,通过DDN线路进行局域网互连的应用也较广泛。一些海外公司设立在全国各地的办事处在本地先组成内部局域网络,通过路由器、网络设备等经本地、长途DDN与公司总部的局域网相连,实现资源共享和文件传送、事务处理等业务。 
DDN网在金融业中的应用 
DDN网不仅适用于气象、公安、铁路、医院等行业,也涉及到证券业、银行、金卡工程等实时性较强的数据交换。 
通过DDN网将银行的自动提款机(ATM)连接到银行系统大型计算机主机。银行一般租用64Kbps DDN线路把各个营业点的ATM机进行全市乃至全国连网。在用户提款时,对用户的身份验证、提取款额、余额查询等工作都是由银行主机来完成的。这样就形成一个可靠、高效的信息传输网络。 
通过DDN网发布证券行情,也是许多券商采取的方法。证券公司租用DDN专线与证券交易中心实行联网,大屏幕上的实时行情随着证券交易中心的证券行情变化而动态地改变,而远在异地的股民们也能在当地的证券公司同步操作,来决定自己的资金投向。 
DDN网在其它领域中的应用 
DDN网作为一种数据业务的承载网络,不仅可以实现用户终端的接入,而且可以满足用户网络的互连,扩大信息的交换与应用范围。在各行各业、各个领域中的应用也是较广泛的。如无线移动通信网利用DDN联网后,提高了网络的可靠性和快速自愈能力。七号信令网的组网,高质量的电视电话会议,今后增值业务的开发,都是以DDN网为基础的。 


四、DDN网络的发展方向


网络设备在不断地更新换代,人们对新技术的应用不仅仅停留在单一网络的话音或数据传输平台。多媒体通信的应用正在普及。视频点播(IP/TV)、电子商务(E-Business)、IP-Phone、电子购物等新应用正在推广。这些应用对网络的带宽、时延、传输质量等提出更高的要求。DDN独享资源,信道专用将会造成一部分网络资源的浪费,并且对于这些新技术的应用又会带来带宽显得太窄等问题。因此,DDN网络技术也要不断地向前发展。从建立现代化网的需要来看,现有DDN的功能应逐步予以增强。如为用户提供按需分配带宽的能力;为适应多种业务通信与提高信道利用率,应考虑统计复用;提高网管系统的开放性及用户与网络的交互作用能力;可以采用提高中继速率的办法,提高目前节点之间2Mbps的中继速率;相应的用户接入层速率也可大大提高,以适应新技术在DDN网络中的高带宽应用;可以使DDN网络平台成为一个多业务平台。除了目前已有的帧中继延伸业务和话音交换、G3传真业务外,还要采用最先进的设备和技术不断改造和完善DDN网,引入传输与交换、传输与接入等方面的变革,产生出具有交换型虚电路的DDN设备。积极地开展增值网服务,如数据库检索、可视图文等服务。由简单的电路或端口出租型向信息传递服务转变,为信息社会的发展做出更深层次的贡献。 


五、结束语 
DDN网络把数据通信技术、数字通信技术、光纤通信技术、数字交叉连接技术和计算机技术有机地结合在一起。通过发展,DDN应用范围从单纯提供端到端的数据通信扩大到能提供和支持多种通信业务,成为具有众多功能和应用的传输网络。我们要顺应发展潮流,积极追踪新技术的发展,扩大网络服务对象,搞好网络的建设管理,最大限度地发挥网络优势。






2. Distributed Data Network -- 分布式数据网 




GSM
 
目录·一.GSM的涵义
·二.GSM特点
·三.GSM的发展状况
·四.GSM技术资料
·五.GSM通信系统的组成














一.GSM的涵义




GSM全名为:Global System for Mobile Communications,中文为全球移动通信系统,俗称"全球通",是一种起源于欧洲的移动通信技术标准,是第二代移动通信技术,其开发目的是让全球各地可以共同使用一个移动电话网络标准,让用户使用一部手机就能行遍全球。我国于20世纪90年代初引进采用此项技术标准,此前一直是采用蜂窝模拟移动技术,即第一代GSM技术(2001年12月31日我国关闭了模拟移动网络)。目前,中国移动、中国联通各拥有一个GSM网,为世界最大的移动通信网络。GSM系统包括 GSM 900:900MHz、GSM1800:1800MHz 及 GSM-1900:1900MHz等几个频段 。 












二.GSM特点
1.GSM使用上直观的特点:


GSM系统有几项重要特点:防盗拷能力佳、网络容量大、手机号码资源丰富、通话清晰、稳定性强不易受干扰、信息灵敏、通话死角少、手机耗电量低。






2.GSM的技术特点:


1.频谱效率。由于采用了高效调制器、信道编码、交织、均衡和语音编码技术,使系统具有高频谱效率。


2.容量。由于每个信道传输带宽增加,使同频复用栽干比要求降低至9dB,故GSM系统的同频复用模式可以缩小到4/12或3/9甚至更小(模拟系统为7/21);加上半速率话音编码的引入和自动话务分配以减少越区切换的次数,使GSM系统的容量效率(每兆赫每小区的信道数)比TACS系统高3~5倍。


3.话音质量。鉴于数字传输技术的特点以及GSM规范中有关空中接口和话音编码的定义,在门限值以上时,话音质量总是达到相同的水平而与无线传输质量无关。


4.开放的接口。GSM标准所提供的开放性接口,不仅限于空中接口,而且报刊网络直接以及网络中个设备实体之间,例如A接口和Abis接口。


5. 安全性。通过鉴权、加密和TMSI号码的使用,达到安全的目的。鉴权用来验证用户的入网权利。加密用于空中接口,由SIM卡和网络AUC的密钥决定。TMSI是一个由业务网络给用户指定的临时识别号,以防止有人跟踪而泄漏其地理位置。


6.与ISDN、PSTN等的互连。与其他网络的互连通常利用现有的接口,如ISUP或TUP等。


7.在SIM卡基础上实现漫游。漫游是移动通信的重要特征,它标志着用户可以从一个网络自动进入另一个网络。GSM系统可以提供全球漫游,当然也需要网络运营者之间的某些协议,例如计费。












三.GSM的发展状况








20世纪80年代中期,当模拟蜂窝移动通信系统刚投放市场时,世界上的发达国家就在研制第二代移动通信系统。其中最有代表性和比较成熟的制式有泛欧GSM ,美国的ADC(D-AMPS)和日本的JDC(现在改名为PDC)等数字移动通信系统。在这些数字系统中,GSM的发展最引人注目。1991年GSM系统正式在欧洲问世,网络开通运行。










GSM系列主要有GSM900、DCS1800和PCS1900三部分,三者之间的主要区别是工作频段的差异。










蜂窝移动通信的出现可以说是移动通信的一次革命。其频率复用大大提高了频率利用率并增大系统容量,网络的智能化实现了越区转接和漫游功能,扩大了客户的服务范围,但上述模拟系统有四大缺点:各系统间没有公共接口;很难开展数据承载业务;频谱利用率低无法适应大容量的需求;安全保密性差,易被窃听,易做“假机”。尤其是在欧洲系统间没有公共接口,相互之间不能漫游,对客户造成很大的不便。










GSM数字移动通信系统源于欧洲。早在1982年,欧洲已有几大模拟蜂窝移动系统在运营,例如北欧多国的NMT(北欧移动电话)和英国的TACS(全接入通信系统),西欧其它各国也提供移动业务。当时这些系统是国内系统,不可能在国外使用。为了方便全欧洲统一使用移动电话,需要一种公共的系统,1982年,北欧国家向CEPT(欧洲邮电行政大会)提交了一份建议书,要求制定900MHz频段的公共欧洲电信业务规范。在这次大会上就成立了一个在欧洲电信标准学会(ETSI)技术委员会下的“移动特别小组(Group Special Mobile)”ÿ
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/583294
推荐阅读
相关标签
  

闽ICP备14008679号