当前位置:   article > 正文

排序算法详细总结_排序算法实验总结

排序算法实验总结

排序算法总结

常见的快速排序、归并排序、堆排序、冒泡排序 等属于比较排序 (元素之间的次序依赖于它们之间的比较)

在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。

比较排序适用于各种规模的数据,不需在乎数据的分布,比较排序适用于一切需要排序的情况。

计数排序、基数排序、桶排序则属于非比较排序 。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置 。

非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。

非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。

冒泡排序

冒泡排序 是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就进行交换。

算法描述
步骤1: 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
步骤2: 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
步骤3: 针对所有的元素重复以上的步骤,除了最后一个;
步骤4: 重复步骤1~3,直到排序完成。

public static int[] bubbleSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length - 1; i++)
            for (int j = 0; j < array.length - 1 - i; j++)
                if (array[j + 1] < array[j]) {
                    int temp = array[j + 1];
                    array[j + 1] = array[j];
                    array[j] = temp;
                }
        return array;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

选择排序

选择排序 是表现最稳定的排序算法之一 ,因为无论什么数据进去都是O(n2)的时间复杂度 ,所以用到它的时候,数据规模越小越好。

选择排序(Selection-sort) 是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

public static int[] selectionSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }
        return array;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

插入排序

插入排序(Insertion-Sort) 的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

public static int[] insertionSort(int[] array) {
        if (array.length == 0)
            return array;
        int current;
        for (int i = 0; i < array.length - 1; i++) {
            current = array[i + 1];
            int preIndex = i;
            while (preIndex >= 0 && current < array[preIndex]) {
                array[preIndex + 1] = array[preIndex];
                preIndex--;
            }
            array[preIndex + 1] = current;
        }
        return array;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

希尔排序

希尔排序是希尔(Donald Shell) 于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n^2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

在这里插入图片描述

图源网络, 侵删

public static int[] ShellSort(int[] array) {
        int len = array.length;
        int temp, gap = len / 2;
        while (gap > 0) {
            for (int i = gap; i < len; i++) {
                temp = array[i];
                int preIndex = i - gap;
                while (preIndex >= 0 && array[preIndex] > temp) {
                    array[preIndex + gap] = array[preIndex];
                    preIndex -= gap;
                }
                array[preIndex + gap] = temp;
            }
            gap /= 2;
        }
        return array;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

归并排序

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlog n)的时间复杂度。代价是需要额外的内存空间。

归并排序 是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
  • 1

5.1 算法描述
步骤1:把长度为n的输入序列分成两个长度为n/2的子序列;
步骤2:对这两个子序列分别采用归并排序;
步骤3:将两个排序好的子序列合并成一个最终的排序序列。

public static int[] MergeSort(int[] array) {
        if (array.length < 2) return array;
        int mid = array.length / 2;
        int[] left = Arrays.copyOfRange(array, 0, mid);
        int[] right = Arrays.copyOfRange(array, mid, array.length);
        return merge(MergeSort(left), MergeSort(right));
    }
// 归并排序——将两段排序好的数组结合成一个排序数组
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        for (int index = 0, i = 0, j = 0; index < result.length; index++) {
            if (i >= left.length)
                result[index] = right[j++];
            else if (j >= right.length)
                result[index] = left[i++];
            else if (left[i] > right[j])
                result[index] = right[j++];
            else
                result[index] = left[i++];
        }
        return result;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

快速排序

快速排序 的基本思想:通过一次排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

    public static int[] QuickSort(int[] array, int start, int end) {
        if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
        int smallIndex = partition(array, start, end);
        if (smallIndex > start)
            QuickSort(array, start, smallIndex - 1);
        if (smallIndex < end)
            QuickSort(array, smallIndex + 1, end);
        return array;
    }

    public static int partition(int[] array, int start, int end) {
        int pivot = (int) (start + Math.random() * (end - start + 1));
        int smallIndex = start - 1;
        swap(array, pivot, end);
        for (int i = start; i <= end; i++)
            if (array[i] <= array[end]) {
                smallIndex++;
                if (i > smallIndex)
                    swap(array, i, smallIndex);
            }
        return smallIndex;
    }

    public static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

桶排序

算法描述
步骤1:人为设置一个BucketSize,作为每个桶所能放置多少个不同数值(例如当BucketSize==5时,该桶可以存放{1,2,3,4,5}这几种数字,但是容量不限,即可以存放100个3);
步骤2:遍历输入数据,并且把数据一个一个放到对应的桶里去;
步骤3:对每个不是空的桶进行排序,可以使用其它排序方法,也可以递归使用桶排序;
步骤4:从不是空的桶里把排好序的数据拼接起来。

注意,如果递归使用桶排序为各个桶排序,则当桶数量为1时要手动减小BucketSize增加下一循环桶的数量,否则会陷入死循环,导致内存溢出。

在这里插入图片描述

public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
        if (array == null || array.size() < 2)
            return array;
        int max = array.get(0), min = array.get(0);
        // 找到最大值最小值
        for (int i = 0; i < array.size(); i++) {
            if (array.get(i) > max)
                max = array.get(i);
            if (array.get(i) < min)
                min = array.get(i);
        }
        int bucketCount = (max - min) / bucketSize + 1;
        ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
        ArrayList<Integer> resultArr = new ArrayList<>();
        for (int i = 0; i < bucketCount; i++) {
            bucketArr.add(new ArrayList<Integer>());
        }
        for (int i = 0; i < array.size(); i++) {
            bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
        }
        for (int i = 0; i < bucketCount; i++) {
            if (bucketSize == 1) { // 当待排序数组只有重复数字时
                for (int j = 0; j < bucketArr.get(i).size(); j++)
                    resultArr.add(bucketArr.get(i).get(j));
            } else {
                if (bucketCount == 1)
                    bucketSize--;
                ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
                for (int j = 0; j < temp.size(); j++)
                    resultArr.add(temp.get(j));
            }
        }
        return resultArr;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/584383
推荐阅读
相关标签
  

闽ICP备14008679号