赞
踩
常见的快速排序、归并排序、堆排序、冒泡排序 等属于比较排序 (元素之间的次序依赖于它们之间的比较)
在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。
比较排序适用于各种规模的数据,不需在乎数据的分布,比较排序适用于一切需要排序的情况。
计数排序、基数排序、桶排序则属于非比较排序 。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置 。
非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。
非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。
冒泡排序 是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就进行交换。
算法描述
步骤1: 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
步骤2: 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
步骤3: 针对所有的元素重复以上的步骤,除了最后一个;
步骤4: 重复步骤1~3,直到排序完成。
public static int[] bubbleSort(int[] array) {
if (array.length == 0)
return array;
for (int i = 0; i < array.length - 1; i++)
for (int j = 0; j < array.length - 1 - i; j++)
if (array[j + 1] < array[j]) {
int temp = array[j + 1];
array[j + 1] = array[j];
array[j] = temp;
}
return array;
}
选择排序 是表现最稳定的排序算法之一 ,因为无论什么数据进去都是O(n2)的时间复杂度 ,所以用到它的时候,数据规模越小越好。
选择排序(Selection-sort) 是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
public static int[] selectionSort(int[] array) {
if (array.length == 0)
return array;
for (int i = 0; i < array.length; i++) {
int minIndex = i;
for (int j = i; j < array.length; j++) {
if (array[j] < array[minIndex]) //找到最小的数
minIndex = j; //将最小数的索引保存
}
int temp = array[minIndex];
array[minIndex] = array[i];
array[i] = temp;
}
return array;
}
插入排序(Insertion-Sort) 的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
public static int[] insertionSort(int[] array) {
if (array.length == 0)
return array;
int current;
for (int i = 0; i < array.length - 1; i++) {
current = array[i + 1];
int preIndex = i;
while (preIndex >= 0 && current < array[preIndex]) {
array[preIndex + 1] = array[preIndex];
preIndex--;
}
array[preIndex + 1] = current;
}
return array;
希尔排序是希尔(Donald Shell) 于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破O(n^2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
图源网络, 侵删
public static int[] ShellSort(int[] array) { int len = array.length; int temp, gap = len / 2; while (gap > 0) { for (int i = gap; i < len; i++) { temp = array[i]; int preIndex = i - gap; while (preIndex >= 0 && array[preIndex] > temp) { array[preIndex + gap] = array[preIndex]; preIndex -= gap; } array[preIndex + gap] = temp; } gap /= 2; } return array; }
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlog n)的时间复杂度。代价是需要额外的内存空间。
归并排序 是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
5.1 算法描述
步骤1:把长度为n的输入序列分成两个长度为n/2的子序列;
步骤2:对这两个子序列分别采用归并排序;
步骤3:将两个排序好的子序列合并成一个最终的排序序列。
public static int[] MergeSort(int[] array) { if (array.length < 2) return array; int mid = array.length / 2; int[] left = Arrays.copyOfRange(array, 0, mid); int[] right = Arrays.copyOfRange(array, mid, array.length); return merge(MergeSort(left), MergeSort(right)); } // 归并排序——将两段排序好的数组结合成一个排序数组 public static int[] merge(int[] left, int[] right) { int[] result = new int[left.length + right.length]; for (int index = 0, i = 0, j = 0; index < result.length; index++) { if (i >= left.length) result[index] = right[j++]; else if (j >= right.length) result[index] = left[i++]; else if (left[i] > right[j]) result[index] = right[j++]; else result[index] = left[i++]; } return result; }
快速排序 的基本思想:通过一次排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
public static int[] QuickSort(int[] array, int start, int end) { if (array.length < 1 || start < 0 || end >= array.length || start > end) return null; int smallIndex = partition(array, start, end); if (smallIndex > start) QuickSort(array, start, smallIndex - 1); if (smallIndex < end) QuickSort(array, smallIndex + 1, end); return array; } public static int partition(int[] array, int start, int end) { int pivot = (int) (start + Math.random() * (end - start + 1)); int smallIndex = start - 1; swap(array, pivot, end); for (int i = start; i <= end; i++) if (array[i] <= array[end]) { smallIndex++; if (i > smallIndex) swap(array, i, smallIndex); } return smallIndex; } public static void swap(int[] array, int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp;
算法描述
步骤1:人为设置一个BucketSize,作为每个桶所能放置多少个不同数值(例如当BucketSize==5时,该桶可以存放{1,2,3,4,5}这几种数字,但是容量不限,即可以存放100个3);
步骤2:遍历输入数据,并且把数据一个一个放到对应的桶里去;
步骤3:对每个不是空的桶进行排序,可以使用其它排序方法,也可以递归使用桶排序;
步骤4:从不是空的桶里把排好序的数据拼接起来。
注意,如果递归使用桶排序为各个桶排序,则当桶数量为1时要手动减小BucketSize增加下一循环桶的数量,否则会陷入死循环,导致内存溢出。
public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) { if (array == null || array.size() < 2) return array; int max = array.get(0), min = array.get(0); // 找到最大值最小值 for (int i = 0; i < array.size(); i++) { if (array.get(i) > max) max = array.get(i); if (array.get(i) < min) min = array.get(i); } int bucketCount = (max - min) / bucketSize + 1; ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount); ArrayList<Integer> resultArr = new ArrayList<>(); for (int i = 0; i < bucketCount; i++) { bucketArr.add(new ArrayList<Integer>()); } for (int i = 0; i < array.size(); i++) { bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i)); } for (int i = 0; i < bucketCount; i++) { if (bucketSize == 1) { // 当待排序数组只有重复数字时 for (int j = 0; j < bucketArr.get(i).size(); j++) resultArr.add(bucketArr.get(i).get(j)); } else { if (bucketCount == 1) bucketSize--; ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize); for (int j = 0; j < temp.size(); j++) resultArr.add(temp.get(j)); } } return resultArr; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。