赞
踩
1. 什么是机器学习?
权威定义:
Arthur samuel: 在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域。
Tom Mitchell: 对于某类任务T和性能度量P,如果计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序从经验E学习。
其实随着学习的深入,慢慢会发现机器学习越来越难定义,因为涉及到的领域很广,应用也很广,现在基本成为计算机相关专业的标配,但是在实际的操作过程中,又慢慢会发现其实机器学习也是很简单的一件事,我们最的大部分事情其实就是两件事情,一个是分类,一个是回归。比如房价的预测、股价的预测等是回归问题,情感判别、信用卡是否发放等则是属于分类。现实的情况 一般是给我们一堆数据,我们根据专业知识和一些经验提取最能表达数据的特征,然后我们再用算法去建模,等有未知数据过来的时候我们就能够预测到这个是属于哪个类别或者说预测到是一个什么值以便作出下一步的决策。比如说人脸识别系统,目的是作为一个验证系统,可能是一个权限管理,如果是系统中的人则有权限否则没有权限,首先给到我们的数据是一堆人脸的照片,第一步要做的事情是对数据进行预处理,然后是提取人脸特征,最后选择算法比如说SVM或者RF等等,算法的最终选择设计到评价标准,这个后面具体讲,这样我们就建立了一个人脸识别的模型,当系统输入一张人脸,我们就能够知道他是不是在系统之中。机器学习的整个流程不过就这几步,最后不过就是参数寻优,包括现在如火如荼的机器学习。
当我们判断是否要使机器学习时,可以看看是不是以下的场景
1)人类不能手动编程;
2)人类不能很好的定义这个问题的解决方案是什么;
3)人类不能做i到的需要极度快速决策的系统;
4)大规模个性化服务系统;
2.机器学习分类
监督学习:数据集是有标签的,就是说对于给出的样本我们是知道答案的,我们大部分学到的模型都是属于这一类的,包括线性分类器、支持向量机等等;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。