当前位置:   article > 正文

PINN深度学习求解微分方程系列一:求解框架

pinn

下面我将介绍内嵌物理知识神经网络(PINN)求解微分方程。首先介绍PINN基本方法,并基于Pytorch框架实现求解一维Poisson方程。
内嵌物理知识神经网络(PINN)入门及相关论文
深度学习求解微分方程系列一:PINN求解框架(Poisson 1d)
深度学习求解微分方程系列二:PINN求解burger方程正问题
深度学习求解微分方程系列三:PINN求解burger方程逆问题
深度学习求解微分方程系列四:基于自适应激活函数PINN求解burger方程逆问题

1.PINN简介

神经网络作为一种强大的信息处理工具在计算机视觉、生物医学、 油气工程领域得到广泛应用, 引发多领域技术变革.。深度学习网络具有非常强的学习能力, 不仅能发现物理规律, 还能求解偏微分方程.。近年来,基于深度学习的偏微分方程求解已是研究新热点。内嵌物理知识神经网络(PINN)是一种科学机器在传统数值领域的应用方法,能够用于解决与偏微分方程 (PDE) 相关的各种问题,包括方程求解、参数反演、模型发现、控制与优化等。

2.PINN方法

PINN的主要思想如图1,先构建一个输出结果为 u ^ \hat{u} u^的神经网络,将其作为PDE解的代理模型,将PDE信息作为约束,编码到神经网络损失函数中进行训练。
在这里插入图片描述

损失函数主要包括4部分:偏微分结构损失(PDE loss),边值条件损失(BC loss)、初值条件损失(IC loss)以及真实数据条件损失(Data loss)。特别的,考虑下面这个的PDE问题,其中PDE的解 u ( x ) u(x) u(x) Ω ⊂ R d \Omega \subset \mathbb{R}^{d} ΩRd定义,其中 x = ( x 1 , … , x d ) \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) x=(x1,,xd)
f ( x ; ∂ u ∂ x 1 , … , ∂ u ∂ x d ; ∂ 2 u ∂ x 1 ∂ x 1 , … , ∂ 2 u ∂ x 1 ∂ x d ) = 0 , x ∈ Ω f\left(\mathbf{x} ; \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{d}} ; \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} u}{\partial x_{1} \partial x_{d}} \right)=0, \quad \mathbf{x} \in \Omega f(x;x1u,,xdu;x1x12u,,x1xd2u)=0,xΩ
同时,满足下面的边界
B ( u , x ) = 0  on  ∂ Ω \mathcal{B}(u, \mathbf{x})=0 \quad \text { on } \quad \partial \Omega B(u,x)=0 on Ω
为了衡量神经网络 u ^ \hat{u} u^和约束之间的差异,考虑损失函数定义:
L ( θ ) = w f L P D E ( θ ; T f ) + w i L I C ( θ ; T i ) + w b L B C ( θ , ; T b ) + w d L D a t a ( θ , ; T d a t a ) \mathcal{L}\left(\boldsymbol{\theta}\right)=w_{f} \mathcal{L}_{PDE}\left(\boldsymbol{\theta}; \mathcal{T}_{f}\right)+w_{i} \mathcal{L}_{IC}\left(\boldsymbol{\theta} ; \mathcal{T}_{i}\right)+w_{b} \mathcal{L}_{BC}\left(\boldsymbol{\theta},; \mathcal{T}_{b}\right)+w_{d} \mathcal{L}_{Data}\left(\boldsymbol{\theta},; \mathcal{T}_{data}\right) L(θ)=wfLPDE(θ;Tf)+wiLIC(θ;Ti)+wbLBC(θ,;Tb)+wdLData(θ,;Tdata)
式中:
L P D E ( θ ; T f ) = 1 ∣ T f ∣ ∑ x ∈ T f ∥ f ( x ; ∂ u ^ ∂ x 1 , … , ∂ u ^ ∂ x d ; ∂ 2 u ^ ∂ x 1 ∂ x 1 , … , ∂ 2 u ^ ∂ x 1 ∂ x d ) ∥ 2 2 L I C ( θ ; T i ) = 1 ∣ T i ∣ ∑ x ∈ T i ∥ u ^ ( x ) − u ( x ) ∥ 2 2 L B C ( θ ; T b ) = 1 ∣ T b ∣ ∑ x ∈ T b ∥ B ( u ^ , x ) ∥ 2 2 L D a t a ( θ ; T d a t a ) = 1 ∣ T d a t a ∣ ∑ x ∈ T d a t a ∥ u ^ ( x ) − u ( x ) ∥ 2 2

LPDE(θ;Tf)=1|Tf|xTff(x;u^x1,,u^xd;2u^x1x1,,2u^x1xd)22LIC(θ;Ti)=1|Ti|xTiu^(x)u(x)22LBC(θ;Tb)=1|Tb|xTbB(u^,x)22LData(θ;Tdata)=1|Tdata|xTdatau^(x)u(x)22
LPDE(θ;Tf)LIC(θ;Ti)LBC(θ;Tb)LData(θ;Tdata)=Tf1xTff(x;x1u^,,xdu^;x1x12u^,,x1xd2u^)22=Ti1xTiu^(x)u(x)22=Tb1xTbB(u^,x)22=Tdata1xTdatau^(x)u(x)22
w f w_{f} wf w i w_{i} wi w b w_{b} wb w d w_{d} wd是权重。 T f \mathcal{T}_{f} Tf T i \mathcal{T}_{i} Ti T b \mathcal{T}_{b} Tb T d a t a \mathcal{T}_{data} Tdata表示来自PDE,初值、边值以及真值的residual points。这里的 T f ⊂ Ω \mathcal{T}_{f} \subset \Omega TfΩ是一组预定义的点来衡量神经网络输出 u ^ \hat{u} u^与PDE的匹配程度。

3.求解问题定义

d 2 u   d x 2 = − 0.49 ⋅ sin ⁡ ( 0.7 x ) − 2.25 ⋅ cos ⁡ ( 1.5 x ) u ( − 10 ) = − sin ⁡ ( 7 ) + cos ⁡ ( 15 ) + 1 u ( 10 ) = sin ⁡ ( 7 ) + cos ⁡ ( 15 ) − 1

d2u dx2=0.49sin(0.7x)2.25cos(1.5x)u(10)=sin(7)+cos(15)+1u(10)=sin(7)+cos(15)1
 dx2d2uu(10)u(10)=0.49sin(0.7x)2.25cos(1.5x)=sin(7)+cos(15)+1=sin(7)+cos(15)1
真实解为
u : = sin ⁡ ( 0.7 x ) + cos ⁡ ( 1.5 x ) − 0.1 x u:=\sin (0.7 x)+\cos (1.5 x)-0.1 x u:=sin(0.7x)+cos(1.5x)0.1x

4.结果展示

请添加图片描述

请添加图片描述

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号