当前位置:   article > 正文

区间预测 | Matlab实现CNN-KDE卷积神经网络结合核密度估计多置信区间多变量回归区间预测

区间预测 | Matlab实现CNN-KDE卷积神经网络结合核密度估计多置信区间多变量回归区间预测

区间预测 | Matlab实现CNN-KDE卷积神经网络结合核密度估计多置信区间多变量回归区间预测

效果一览

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现CNN-KDE卷积神经网络结合核密度估计多置信区间多变量回归区间预测;

2.多变量单输出,包括点预测+概率预测曲线+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2、MAE、RMSE、MAPE、区间覆盖率picp、区间平均宽度百分比pinaw等。

3.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行main文件一键出图。

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, end)';
N = size(P_test, 2);
%% 归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% *值评估指标*
errorTest = T_sim2 - T_test;
AE = abs(errorTest); %绝对误差
MSEErrorTest = mse(errorTest);  %测试集误差
figure;
subplot(2,2,1)
bar(errorTest);
subplot(2,2,2)
histogram(AE,'BinWidth',0.5);
xlabel('绝对误差区间的中位数','FontWeight',"bold");
ylabel('位于该误差区间的样本个数','FontWeight',"bold");
MAE = sum(AE)/length(AE);
MSE = MSEErrorTest;
RMSE = sqrt(MSE);
disp(['测试集数据的R2为:', num2str(R2)])
disp(['测试集数据的MAE为:', num2str(mae2)])
disp(['测试集数据的RMSE为:', num2str(RMSE2)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/631618
推荐阅读
相关标签
  

闽ICP备14008679号