当前位置:   article > 正文

8位可控加减法电路设计_FPGA配置外围电路设计冲突与解决方法

计算机组成原理实验仿真可控加减法电路设计实验遇见的问题和解决方法

如前所述,FPGA是由存放在片内的RAM来设置其工作状态的,因此工作时需要对片内RAM进行编程。用户可根据不同的配置模式,采用不同的编程方式。Xilinx FPGA的常用配置模式有主串模式、从串模式、Select MAP模式等。

FPGA和CPLD不同,上电后不能直接工作,而是需要一个配置过程。Xilinx FPGA需要经过8个步骤才能正常地运行用户逻辑,整个流程如图1-8所示。

765b46ecad5ba27b9d3f85fc97b7f851.png

图1-8 FPGA上电配置步骤

1.FPGA上电启动

FPGA工作的第一步就是给器件加电。Xilinx要求VCCINT(核心电压)先动,然后再是VCCO(I/O电压),最坏情况是它们之间不能相差1 s以上。在并行配置模式下,要求VCCO_2参考电压必须和FLASH参考电压相同。

在系统正常上电或者PROG-B是一个低脉冲时,FPGA开始配置寄存器空间。这段时间除定义好的配置引脚外,其他I/O引脚均被设置为高阻态(High-Z)。经多次测试,这个阶段需要30 ms左右的时间。

FPGA启动阶段最后一步就是配置启动模式。在PROG-B变高时,FPGA开始采集配置方式引脚(M3、M2、M1),并同时驱动CCLK输出。在这个阶段,有两种方法可以延迟FPGA的配置时序,一种是拉低INIT-B引脚,这是由于FPGA检测到自身还没有初始化完毕,不会进行接下来的操作步骤,这种状态一直保持到INIT-B引脚变高。另一种就是拉低PROG-B引脚,使FPGA处于等待配置状态。

2.FPGA数据加载

FPGA正常数据加载前,需要做一个器件与FLASH之间的同步检查。其方法是传输一个特殊的32位数值(0xAA995566)到FPGA中,提示FPGA下面开始传输的是配置数据。这个步骤对用户来说是透明的,因为Xilinx ISE Bitstream Generator生成的.bit文件中已经自动加入了这个校验码。

在完成配置前的通信同步后,FPGA与FLASH之间还无法识别对方是什么器件,于是Xilinx就给每一个型号的FPGA设计了一个唯一的器件ID号,这个ID号可以在Xilinx配置手册中查到。如XC4VSX35,其ID号为0x02088093。FPGA需要从FLASH中读出这个器件号和自身比对,如果相同就继续下面的步骤,如果不同则配置失败,并打印出配置故障信息。

所有准备工作正常完成后,FPGA开始载入配置文件。这一步对大多数用户也是透明的,由器件自行完成。这也是配置过程中最耗时的步骤,时间从100 ms到几秒不等。在这个过程中,FPGA的所有可配置I/O根据HSWAPEN引脚的设置变为弱上拉(HSWAPE=1)或者高阻态(HSWAPE=0)。这个阶段的I/O引脚还没有变为用户需要的状态,也最有可能影响到其他外围电路的上电时序和运行。设计硬件电路时要特别注意并采取必要措施,如加入上下拉电阻或改变器件加电顺序来尽量避免或减少FPGA配置时对电路其他器件的影响。

配置文件载入完成后,为了验证数据的正确性,FPGA还自动设置了CRC校验(这个在ISE配置选项中也可以去掉,但是为了保证载入数据的正确性,这个是必须选择的)。如果CRC校验不正确,FPGA会自动把INIT-B拉低,放弃这次配置。用户必须把PROG-B引脚拉低,才能进行重新配置。

3.启动序列

CRC校验正确后,FPGA不会马上执行用户的逻辑,它还要进行一些自身内部电路的配置,如DCM锁定(DCMs to Lock)、全局写信号使能(Global Write Enable)等,这些信号的启动顺序也是在ISE配置选项中设置的。必须启动的序列为:释放DONE引脚;释放GTS信号,激活IO引脚;设置全局读/写使能、使能内部RAM和FIFOAssert,结束上电配置。

从上面论述可知,整个FPGA的上电配置正常时序如图1-9所示。

4.FPGA配置外围电路设计冲突与解决方法

FPGA上电配置整个过程大约需要200 ms~2 s,这段时间绝大多数其他外围电路器件都已经上电并正常工作了,而FPGA的通用I/O引脚还处于弱上拉(HSWAPEN=0)或者不定态(HSWAPEN=1),设计时就需要考虑这些器件上电初始化和FPGA通用I/O引脚有无时序冲突。例如,上电时,外围器件要求I/O引脚都为低电平,而FPGA默认是弱上拉,初始化电平产生了冲突;外围器件要求在上电复位后马上采集配置引脚进行初始化,而FPGA还处在配置状态,无法正确上拉或下拉I/O引脚,器件初始化错误;外围器件要求上电初始化前需要时钟锁相,FPGA配置时产生不了时钟,导致器件初始化失败等。解决这些冲突大致有3种方法,但前提都是要正确配置HSWAPEN引脚,这是因为在FPGA执行“器件上电”步骤后(5~30 ms内),它输出的I/O引脚状态是可以通过HSWAPEN设定的。

820c4aa89e44db5268f01cffd935ceaa.png

图1-9 FPGA上电配置时序

方法1:在FPGA的I/O引脚外加上下拉电阻,阻值在1~10KΩ之间,根据实际需要确定。FPGA在上电后10 ms内能通过上下拉电阻把I/O引脚拉到用户需要的电平上,这样能满足上电较慢但是又要求固定电平的外围电路的要求,如功放发射开关和保护开关等。

方法2:FPGA可以在配置完成后产生一个全局复位信号,使外围电路硬件复位,再进行一次初始化操作。这样能解决PowrerPC、ARM这种上电初始化很快(在100ms内就能完成)、但由于FPGA没有配置完成而导致PowrerPC初始化错误的问题。而且这种方式不用外接多余的上下拉电阻,减少了电路设计复杂性。

方法3:FPGA可以在配置完成后产生一个Power Good信号,系统根据此标志再给外围其他有时序要求的器件上电,这样能满足DSP或者高速AD这种需要时钟锁定后再进行初始化的器件的要求。

这3种方法也可根据具体情况混合使用,能达到更好的效果。

5.结论

通过上述分析可知,FPGA上电是一个短暂而复杂的过程,设计时需要充分考虑FPGA上电配置时序和该过程中I/O引脚的各种状态对外围电路的影响。根据系统设计的具体情况,通过选用最合理的配置方式以及外围电路连接,达到了既不影响其他器件性能和整个系统功能,又简化和改善了整个电路设计的效果。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/842895
推荐阅读
相关标签
  

闽ICP备14008679号