当前位置:   article > 正文

如何系统学习ElasticSearch、Kibana、Logstash:死磕 Elasticsearch 方法论(初学者必看)_es死磕

es死磕

目录

一、ELK Stack 的应用场景

场景一:使用 ES 作为业务系统的后端。

场景二:在原有系统中增加 ES、Logstash、Kibana等。

场景三:使用 ELK Stack 结合现有工具对外提供服务。

场景四:其他综合业务场景

二、ELK Stack 学习的优先级

1、我建议 Elasticsearch 为第一优先级。

2、第二学习优先级为 Kibana

3、第三学习优先级为 Logstash

三、ES和Kibana在docker中的安装

ES:

Kibana

写在最后,ELK的学习,建议直接阅读官方文档。


一、ELK Stack 的应用场景

场景一:使用 ES 作为业务系统的后端。

此时,ES 的作用类似传统业务系统中的 MySQL、PostgreSQL、Oracle 或者 Mongo 等的基础关系型数据库或非关系型数据库的作用。 

我们举例说明。使用 ES 对基础文档进行检索操作,如将传统的 word 文档、PDF 文档、PPT 文档等通过 Openoffice 或者 pdf2htmlEX 工具转换为 HTML,再将 HTML 以JSON 串的形式录入到 ES,以对外提供检索服务。

场景二:在原有系统中增加 ES、Logstash、Kibana等。

原有的业务系统中存在 MySQL、Oracle、Mongo 等基础数据,但想实现全文检索服务,就在原有业务系统基础的加上一层 ELK。

举例一,将原有系统中 MySQL 中的数据通过 logstashinputjdbc 插件导入到 ES 中,并通过 Kibana 进行图形化展示。

举例二,将原有存储在 Hadoop HDFS 中的数据导入到 ES 中,对外提供检索服务。

场景三:使用 ELK Stack 结合现有工具对外提供服务。

举例一,日志检索系统。将各种类型的日志通过 Logstash 导入 ES 中,通过 Kibana 或者 Grafana 对外提供可视化展示。

举例二,通过 Flume 等将数据导入 ES 中,通过 ES 对外提供全文检索服务。

场景四:其他综合业务场景

主要借助 ES 强大的全文检索功能实现,如分页查询、各类数据结果的聚合分析、图形化展示(饼图、线框图、曲线图等)。

举例说明,像那些结合实际业务的场景,如安防领域、金融领域、监控领域等的综合应用。

二、ELK Stack 学习的优先级

1、我建议 Elasticsearch 为第一优先级。

(1)掌握 Elasticsearch 的基本概念,主要包括:

(2)掌握 Elasitcsearch 的基本操作,主要包括:

(3)掌握 Elasticsearch 高级操作,主要包括:

(4)掌握 Elasticsearch Java/Python 等API,主要包括:

(5)Elasticsearch 结合场景开发实战,主要包括:

2、第二学习优先级为 Kibana

3、第三学习优先级为 Logstash

以上内容转载至 博客专家 -铭毅天下 的 《死磕 Elasticsearch 方法论》:普通程序员高效精进的 10 大狠招!(完整版)

三、ES和Kibana在docker中的安装

ES:

1、在docker环境下安装ElasticSearch

      docker pull elasticsearch:6.4.2

2、查看镜像

       docker images

3、启动ElasticSearch  

       docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" --name MyEs(别名) -d e47ebd7ec3ee(镜像id)

说明:

  • -d 后台启动
  • -p 9200:9200 将虚拟机9200端口映射到elasticsearch的9200端口(web通信默认使用9200端口)
  • -p 9300:9300 将虚拟机9300端口映射到elasticsearch的9300端口(分布式情况下,各个节点之间通信默认使用9300端口)
  • --name MyEs 指定一个名字(MyEs 随意指定)

 

Kibana

1、安装

     docker pull docker.elastic.co/kibana/kibana:6.4.2

2、运行

docker run -d -p 5601:5601 --name kb02 --link MyEs(已启动的Es名称):elasticsearch f64d082f5f08(kibana镜像id)

 

写在最后,ELK的学习,建议直接阅读官方文档。

https://www.elastic.co/guide/cn/elasticsearch/guide/current/highlighting-intro.html  ElasticSearch中文参考文献(2.0版)

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-cross-cluster-search.html ElasticSearch最新版

https://www.elastic.co/guide/cn/kibana/current/docker.html  Kibana中文版用户手册

https://www.elastic.co/guide/en/logstash/6.4/introduction.html  Logstash最新版

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/939142
推荐阅读
相关标签
  

闽ICP备14008679号