赞
踩
Datawhale干货
作者:张帆,陈安东,Datawhale成员
在AI领域,大模型的发展正以前所未有的速度推进技术的边界。
北京时间4月19日凌晨,Meta在官网上官宣了Llama-3,作为继Llama-1、Llama-2和Code-Llama之后的第三代模型,Llama-3在多个基准测试中实现了全面领先,性能优于业界同类最先进的模型。
纵观Llama系列模型,从版本1到3,展示了大规模预训练语言模型的演进及其在实际应用中的显著潜力。这些模型不仅在技术上不断刷新纪录,更在商业和学术界产生了深远的影响。因此,对Llama模型不同版本之间的系统对比,不仅可以揭示技术进步的具体细节,也能帮助我们理解这些高级模型如何解决现实世界的复杂问题。
文本将详细梳理Llama开源家族的演进历程,包括:
Llama进化史(第1节)
模型架构(第2节)
训练数据(第3节)
训练方法(第4节)
效果对比(第5节)
社区生态(第6节)
总结(第7节)
与此同时,我们还设计了一系列全面的开源课程(So-Lrage-Lm),旨在从多个维度深入解析大规模预训练语言模型的内在工作机制和外在应用场景。课程内容覆盖了从模型架构、性能评估,到数据管理和模型优化等关键技术点,以及模型在社会、环境和法律层面的复杂交互。
通过本课程,参与者将学习如何从理论和实践层面评估和优化大模型。我们的课程规划包括了一系列模块化的学习单元,每一单元都针对大模型的一个具体方面,从基础知识到高级应用逐步深入,确保学习者可以在结束课程后,独立进行大模型的设计、评估和应用。此外,课程中的案例研究和实践项目将直接关联到当前最前沿的AI技术和应用,以及这些技术如何在现实世界中找到应用。
点击访问课程地址或者阅读原文即可查看课程内容,欢迎Star~
https://github.com/datawhalechina/so-large-lm
本节将对每个版本的Llama模型进行简要介绍,包括它们发布的时间和主要特点。
Llama-1 [1]是Meta在2023年2月发布的大语言模型,是当时性能非常出色的开源模型之一,有7B、13B、30B和65B四个参数量版本。Llama-1各个参数量版本都在超过1T token的语料上进行了预训训练,其中,最大的65B参数的模型在2,048张A100 80G GPU上训练了近21天,并在大多数基准测试中超越了具有175B参数的GPT-3。
由于模型开源且性能优异,Llama迅速成为了开源社区中最受欢迎的大模型之一,以Llama为核心的生态圈也由此崛起。我们将在第6节对这一生态进行详细介绍。与此同时,众多研究者将其作为基座模型,进行了继续预训练或者微调,衍生出了众多变体模型(见下图),极大地推动了大模型领域的研究进展。
唯一美中不足的是,因为开源协议问题,Llama-1不可免费商用。
时隔5个月,Meta在2023年7月发布了免费可商用版本 Llama-2 [2],有7B、13B、34B和70B四个参数量版本,除了34B模型外,其他均已开源。
相比于Llama-1,Llama-2将预训练的语料扩充到了 2T token,同时将模型的上下文长度从2,048翻倍到了4,096,并引入了分组查询注意力机制(grouped-query attention, GQA)等技术。
有了更强大的基座模型Llama-2,Meta通过进一步的有监督微调(Supervised Fine-Tuning, SFT)、基于人类反馈的强化学习(Reinforcement Learning with Human Feedback, RLHF)等技术对模型进行迭代优化,并发布了面向对话应用的微调系列模型 Llama-2 Chat。
通过“预训练-有监督微调-基于人类反馈的强化学习”这一训练流程,Llama-2 Chat不仅在众多基准测试中取得了更好的模型性能,同时在应用中也更加安全。
随后,得益于Llama-2的优异性能,Meta在2023年8月发布了专注于代码生成的Code-Llama,共有7B、13B、34B和70B四个参数量版本。
1.3 Llama-3 系列
2024年4月,Meta正式发布了开源大模型 Llama 3,包括8B和70B两个参数量版本。除此之外,Meta还透露,400B的Llama-3还在训练中。
相比Llama-2,Llama-3支持8K长文本,并采用了一个编码效率更高的tokenizer,词表大小为128K。在预训练数据方面,Llama-3使用了超过15T token的语料,这比Llama 2的7倍还多。
Llama-3在性能上取得了巨大飞跃,并在相同规模的大模型中取得了最优异的性能。
另外,推理、代码生成和指令跟随等能力得到了极大的改进,使Llama 3更加可控。
本节将详细描述Llama的模型架构,包括神经网络的大小、层数、注意力机制等。
目前,主流的大语言模型都采用了Transformer[3]架构,它是一个基于多层自注意力(Self-attention)的神经网络模型。
原始的Transformer由编码器(Encoder)和解码器(Decoder)两个部分构成,同时,这两个部分也可以独立使用。
例如基于编码器的BERT [4]模型和基于解码器的GPT [5]模型。
Llama模型与GPT类似,也是采用了基于解码器的架构。在原始Transformer解码器的基础上,Llama进行了如下改动:
为了增强训练稳定性,采用前置的RMSNorm [6]作为层归一化方法。
为了提高模型性能,采用SwiGLU [7]作为激活函数。
为了更好地建模长序列数据,采用RoPE [8]作为位置编码。
为了平衡效率和性能,部分模型采用了分组查询注意力机制(Grouped-Query Attention, GQA)[9]。
具体来说,首先将输入的token序列通过词嵌入(word embedding)矩阵转化为词向量序列。然后,词向量序列作为隐藏层状态依次通过声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。