赞
踩
因此在训练文件中要引入model(model和train文件一定要在一个文件夹下)
-----------------测试数据集评估(不需要调优)
加限制条件(避免无用信息)
优化:tensorboard进行画图
输出1,1(横着看)
计算对应位置正确的个数:
57:
74:
网络层中是否有特殊层
顺序:
# -*- coding: utf-8 -*- # 作者:小土堆 # 公众号:土堆碎念 import torchvision from torch.utils.tensorboard import SummaryWriter from model import * # 准备数据集 from torch import nn from torch.utils.data import DataLoader train_data = torchvision.datasets.CIFAR10(root="../data", train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10(root="../data", train=False, transform=torchvision.transforms.ToTensor(), download=True) # length 长度 train_data_size = len(train_data) test_data_size = len(test_data) # 如果train_data_size=10, 训练数据集的长度为:10 print("训练数据集的长度为:{}".format(train_data_size)) print("测试数据集的长度为:{}".format(test_data_size)) # 利用 DataLoader 来加载数据集 train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # 创建网络模型 tudui = Tudui() # 损失函数 loss_fn = nn.CrossEntropyLoss() # 优化器 # learning_rate = 0.01 # 1e-2=1 x (10)^(-2) = 1 /100 = 0.01 learning_rate = 1e-2 optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate) # 设置训练网络的一些参数 # 记录训练的次数 total_train_step = 0 # 记录测试的次数 total_test_step = 0 # 训练的轮数 epoch = 10 # 添加tensorboard writer = SummaryWriter("../logs_train") for i in range(epoch): print("-------第 {} 轮训练开始-------".format(i+1)) # 训练步骤开始 tudui.train() for data in train_dataloader: imgs, targets = data outputs = tudui(imgs) loss = loss_fn(outputs, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step = total_train_step + 1 if total_train_step % 100 == 0: print("训练次数:{}, Loss: {}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 tudui.eval() total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): for data in test_dataloader: imgs, targets = data outputs = tudui(imgs) loss = loss_fn(outputs, targets) total_test_loss = total_test_loss + loss.item() accuracy = (outputs.argmax(1) == targets).sum() total_accuracy = total_accuracy + accuracy print("整体测试集上的Loss: {}".format(total_test_loss)) print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step) total_test_step = total_test_step + 1 torch.save(tudui, "tudui_{}.pth".format(i)) print("模型已保存") writer.close()
网络模型
加载网络模型
预测最大结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。