当前位置:   article > 正文

【论文笔记】Enhancing Pre-Trained Language Representations with Rich Knowledge for MRC_enhancing pre-trained language models with sentenc

enhancing pre-trained language models with sentence position embeddings for

KT-NET——Knowledge and Text fusion NET

 

KBs :WrodNet + NELL ;  distrubuted representations of KBs(KB embeddings).

WordNet:记录了lexical relations, 比如(organism, hypernym of, animal)

NELL:stores beliefs about entities;比如(Coca Cola, headquartered in, Atlanta)

Datasets:ReCoRD, SQuAD1.1

与其他利用extra knowledge model的区别(比如Kn-Reader区别

首先学习了KB concepts的embeddins,对学习到的KB embeddings再做retrieved并整合进MRC系统里(也就是structured kg和context是整合起来的)。这样用到的relevant KB是globally的,这对MRC系统来说more useful.

之前的KB model都是先retrieve相关KB,然后再对相关KB encode和整合进MRC系统,其中的relevant KB是locally的。

评估指标:EM, F1,EM+F1 score

这篇论文的相关利用知识的模型和论文都值得看一看。

贡献

1. pre-trained LMs + kn,未来研究的潜在方向,enhancing advanced LMs with kg from KBs.

2.设计了MRC的KT-NET

 

使用了kb的bert的效果

来源于ReCoRD(2018): 引入来自WordNet和NELL的kn以后,提高了CST准确度。

 

Real-word entities, synsets, concepts

 

KT-NET模型

 

模型简述

①首先学习2个KBs的embeddings;

②检索相关的可能的KB embeddings;

③encodes,把选中的embeddings 和BERT的隐层状态fuse起来;

④用context-, knowledge-aware predictions.

 

为了encode kg,使用了knowledge graph embedding技术,从而学到KB concepts的向量表示。

给定P,Q,然后为所有token w(w∈P∪Q的)检索一系列相关的KB concepts C(w),其中每个概念c∈C(w),c是学到的vector embedding c. 从而得到预训练的KB embeddings,再+ 4 major components里。

 

然后,迭代地:

  1. BERT Encoding layer,计算问题和passages的deep, context-aware representations;
  2. Knowledge intergration layer, 不仅context-aware,并且knowledge-aware。利用attention机制从kb memory中选择最相关的kb embeddings, 然后把他们和bert encode的representations整合起来;
  3. Self-maching layerfuse BERT and KB representations,进一步rich interactions.
  4. Output layermake knowledge-aware predictions.

 

具体

使用的2个KBs,知识的被存储为triples:(subject, relation, object),

Knowledge embedding

给定一个triple(s,r,o),学习vector embeddings of subject s, relation r, and object o.

然后使用BILINEAR model,f(s,r,o) = sTdiag(r)o.

这样已经在KB里的triples会有higher validity. 然后一个magin-base ranking loss来学习嵌入。从而得到两个KBs的每个entity的vector representation。

Retrieval

Wordnet里,返回word的synsets作为候选;

NELL里,首先识别P,Q的NE,通过string matching识别出的entities连接到NELL entities,然后搜集相关NELL concepts作为候选获得一系列潜在相关概念。

如图:passage/question的 token,给出kb中3个最相关度概念~ (用attention来选出)

 

4 component

 

 

 

 

 

实验

预处理:使用BERT的BasicTokenizer,用NLTK找同义词,还用FullTokenizer built in BERT to segment words into wordicecs.

 

 

 

考虑所有句子的单词,(n. v. adj. adv),然后每个词si,获取最后隐层词表示,然后计算q和p的词si、sj的余弦相似度

在MRC任务fine-tune后BERT对question的词会学习到相似的表示。但是整合入知识以后,不同的q的单词展示出对一篇文章的单词不同的相似度,这些相似度很好地反映了它们在KBs里encode的关系。

KT-NET可以学习更准确的representations, 从而取得更好的question-passage matching.

 

提到的技术

Knowledge graph embedding techniques (Yang et al., 2015):用于encode knowledge, 学习到KB concept的向量表示;

Element-wise multiplcation;

Row-wise softmax;

BILINEAR model(yang 2015) 通过一个双线性函数f(s,r,o)来测量validity,并且a margin-based ranking loss to learn the embeddings;

 

需要外部知识的数据集

ReCoRD :extractive MRC datasets

ARC 、MCScript 、OpenBookQA 、CommonsenseQA :multi-choice MRC datasets

structured knowledge from KBs :一系列论文(看论文)

 

部分提到的论文

(Bishan Yang and Tom Mitchell. 2017. ) Leveraging knowledge bases in lstms for improving machine reading;

(2018)Commonsense for generative multi-hop question answering tasks.;

【看过】(2018)Knowledgeable reader: Enhancing cloze-style reading comprehension with external commonsense knowledge.;

(2018, commonsense reasoning)Bridging the gap between human and machine commonsense reading comprehension

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/961376
推荐阅读
相关标签
  

闽ICP备14008679号